DOI QR코드

DOI QR Code

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala) ;
  • Soria, J.M. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala) ;
  • Perez-Aracil, J. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala) ;
  • Pereira, E. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala) ;
  • Diez-Jimenez, E. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala)
  • Received : 2021.07.27
  • Accepted : 2021.11.18
  • Published : 2022.03.25

Abstract

This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.

Keywords

Acknowledgement

The research leading to these results has received funding from the Spanish Ministerio de Economia y Competitividad under the Plan Estatal de I+D+I 2013-2016, grant agreement n° ESP2015-72458-EXP.

References

  1. Andersen, P. (1997), Identification of civil engineering structures using vector ARMA models, Aalborg University, Denmark.
  2. Ashkarran, A.A. and Mahmoudi, M. (2020), "Magnetic Levitation Systems for Disease Diagnostics", Trends Biotechnol., 1-11. https://doi.org/10.1016/j.tibtech.2020.07.010
  3. Bastaits, R., Rodrigues, G., Mokrani, B. and Preumont, A. (2009), "Active optics of large segmented mirrors: dynamics and control", J. Guid. Control Dyn., 32(6), 1795-1803. https://doi.org/10.2514/1.44041
  4. Bauer, D. (2005), "Asymptotic properties of subspace estimators", Automatica, 41(3), 359-376. https://doi.org/10.1016/j.automatica.2004.11.012
  5. Busch-Vishniac, I.J. (1990), "Applications of Magnetic Levitation-Based Micro-Automation in Semiconductor Manufacturing", IEEE Transact. Semicond. Manuf., 3(3), 109-115. https://doi.org/10.1109/66.56563
  6. Cansiz, A. (2009), "Vertical, radial and drag force analysis of superconducting magnetic bearings", Supercond. Sci. Technol., 22(7), 075003. https://doi.org/10.1088/0953-2048/22/7/075003
  7. Cara, F.J., Carpio, J., Juan, J. and Alarcon, E. (2012), "An approach to operational modal analysis using the expectation maximization algorithm", Mech. Syst. Signal Process., 31, 109-129. https://doi.org/10.1016/j.ymssp.2012.04.004
  8. Casciati, F. and Domaneschi, M. (2007), "Semi-active electro-inductive devices: characterization and modelling", J. Vib. Control, 13(6), 815-838. https://doi.org/10.1177/1077546307077465
  9. Casciati, F. and Giuliano, F. (2009), "Performance of multi-TMD in the towers of suspension bridges", J. Vib. Control, 15(6), 821-847. https://doi.org/10.1177/1077546308091455
  10. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures - theory and applications: A review of recent advances", J. Intell. Mater. Syst. Struct., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029
  11. Chang, C.M. and Chou, J.Y. (2020), "Modal tracking of seismically-excited buildings using stochastic system identification", Smart Struct. Syst., Int. J., 26(4), 419-433. https://doi.org/10.12989/sss.2020.26.4.419
  12. Chiuso, A. and Picci, G. (2004), "The asymptotic variance of subspace estimates", J. Econometrics, 118(1), 257-291. https://doi.org/10.1016/S0304-4076(03)00143-X
  13. Choi, Y.M. and Gweon, D.G. (2011), "A high-precision dual-servo stage using halbach linear active magnetic bearings", IEEE/ASME Transact. Mechatron., 16(5), 925-931. https://doi.org/10.1109/TMECH.2010.2056694
  14. Diez-Jimenez, E. and Perez-Diaz, J.L. (2011), "Flip effect in the orientation of a magnet levitating over a superconducting torus in the Meissner state", Physica C: Superconduct., 471(1-2), 8-11. https://doi.org/10.1016/j.physc.2010.10.008
  15. Diez-Jimenez, Efren, Sanchez-Montero, R. and Martinez-Munoz, M. (2017), "Towards miniaturization of magnetic gears: Torque performance assessment", Micromachines, 9(1). https://doi.org/10.3390/mi9010016
  16. Diez-Jimenez, E., Perez-Diaz, J.L., Ferdeghini, C., Canepa, F., Bernini, C., Cristache, C., Sanchez-Garcia-Casarrubios, J., Valiente-Blanco, I., Ruiz-Navas, E.M. and Martinez-Rojas, J.A. (2018), "Magnetic and morphological characterization of Nd2Fe14B magnets with different quality grades at low temperature 5-300 K", J. Magnet. Magnet. Mater., 451, 549-553. https://doi.org/10.1016/j.jmmm.2017.11.109
  17. Diez-Jimenez, E., Alcover-Sanchez, R., Pereira, E., Gomez Garcia, M.J. and Vian, P.M. (2019a), "Design and test of cryogenic cold plate for thermal-vacuum testing of space components", Energies, 14(15). https://doi.org/10.3390/en12152991
  18. Diez-Jimenez, E., Rizzo, R., Gomez-Garcia, M.J. and Corral-Abad, E. (2019b), "Review of passive electromagnetic devices for vibration damping and isolation", Shock Vib., 2019. https://doi.org/10.1155/2019/1250707
  19. Diez-Jimenez, Efren, Alen-Cordero, C., Alcover-Sanchez, R. and Corral-Abad, E. (2021), "Modelling and test of an integrated magnetic spring-eddy current damper for space applications", Actuators, 10(1), 1-18. https://doi.org/10.3390/act10010008
  20. Gauss, S., Albering, J.H., Bock, J., Kesten, M., Fieseler, H., Canders, W.R., May, H., Freyhardt, H.C. and Ullrich, M. (1999), "Cryotank with superconducting, magnetic suspension of the interior tank", IEEE Transact. Appl. Supercond., 9(2 PART 1), 1004-1007. https://doi.org/10.1109/77.783468
  21. Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F.K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., Int. J., 23(5), 421-428. https://doi.org/10.12989/sss.2019.23.5.421
  22. Hull, J.R. (2000), "Superconducting bearings", Supercond. Sci. Technol., 13, R1-R15. https://doi.org/10.1088/0953-2048/13/2/201
  23. Jacobsen, N.J., Andersen, P. and Brincker, R. (2008), "Applications of frequency domain curve-fitting in the EFDD technique", Conference Proceedings: IMAC-XXVI: A Conference & Exposition on Structural Dynamics.
  24. Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., Int. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285
  25. Jimenez-Alonso, J., Perez-Aracil, J., Hernandez Diaz, A. and Saez, A. (2019), "Effect of Vinyl flooring on the modal properties of a steel footbridge", Appl. Sci., 9(7), 1374. https://doi.org/10.3390/app9071374
  26. Kaloop, M.R., Elsharawy, M., Abdelwahed, B., Hu, J.W. and Kim, D. (2020), "Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study", Smart Struct. Syst., Int. J., 26(5), 667-680. https://doi.org/10.12989/sss.2020.26.5.667
  27. Kumar, P., Huang, Y., Toyserkani, E. and Khamesee, M.B. (2020), "Development of a Magnetic Levitation System for Additive Manufacturing: Simulation Analyses", IEEE Transact. Magnet., 56(8). https://doi.org/10.1109/TMAG.2020.2997759
  28. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525
  29. Li, J.Y., Zhu, S. and Shen, J. (2019), "Enhance the damping density of eddy current and electromagnetic dampers", Smart Struct. Syst., Int. J., 24(1), 15-26. https://doi.org/10.12989/sss.2019.24.1.015
  30. Ma, K.B., Postrekhin, Y.V. and Chu, W.K. (2003), "Superconductor and magnet levitation devices", Rev. Sci. Instrum., 74(12), 4989-5017. https://doi.org/10.1063/1.1622973
  31. MacLamore, V.R., Hart, G.C. and Stubbs, I.R. (1971), "Ambient vibration of two suspension bridges", J. Struct. Div. (ASCE), 97(ST10), 2567-2582. https://doi.org/10.1061/JSDEAG.0003026
  32. McLachlan, G. and Krishnan, T. (2007), The EM algorithm and extensions, Vol. 382, John Wiley & Sons.
  33. Niu, Y., Kraemer, P. and Fritzen, C.P. (2012), "Operational modal analysis for Canton Tower", Smart Struct. Syst., Int. J., 10(4), 393-410. https://doi.org/10.12989/sss.2012.10.4_5.393
  34. Ohashi, S. and Ueshima, T. (2012), "Control method of the semi-active damper coil system in the superconducting magnetically levitated bogie against vertical and pitching oscillation", IEEE Transact. Magnet., 48(11), 4542-4545. https://doi.org/10.1109/TMAG.2012.2202378
  35. Olaru, R., Arcire, A., Petrescu, C., Mihai, M.M. and Girtan, B. (2017), "A novel vibration actuator based on active magnetic spring", Sensors Actuators, A: Phys., 264, 11-17. https://doi.org/10.1016/j.sna.2017.07.041
  36. Park, S.B. and Jang, S.J. (2020), "Design method for the 2DOF electromagnetic vibrational energy harvester", Smart Struct. Syst., Int. J., 25(4), 393-399. https://doi.org/10.12989/sss.2020.25.4.393
  37. Perez-Diaz, J.L., Garcia-Prada, J.C., Diez-Jimenez, E., Valiente-Blanco, I., Sander, B., Timm, L., Sanchez-Garcia-Casarrubios, J., Serrano, J., Romera, F., Argelaguet-Vilaseca, H. and Gonzalez-de-Maria, D. (2012), "Non-contact linear slider for cryogenic environment", Mech. Mach. Theory, 49(7), 308-314. https://doi.org/10.1016/j.mechmachtheory.2011.09.002
  38. Perez-Diaz, J., Diez-Jimenez, E., Valiente-Blanco, I., Cristache, C. and Sanchez-Garcia-Casarrubios, J. (2014a), "Contactless mechanical components: gears, torque limiters and bearings", Machines, 2(3), 312-324. https://doi.org/10.3390/machines2040312
  39. Perez-Diaz, J.L., Valiente-Blanco, I., Diez-Jimenez, E. and Sanchez-Garcia-Casarrubios, J. (2014b), "Superconducting noncontact device for precision positioning in cryogenic environments", IEEE/ASME Transact. Mechatron., 19(2), 598-605. https://doi.org/10.1109/TMECH.2013.2250988
  40. Perez-Diaz, J.L., Diez-Jimenez, E., Valiente-Blanco, I., Cristache, C., Alvarez-Valenzuela, M.-A., Sanchez-Garcia-Casarrubios, J., Ferdeghini, C., Canepa, F., Hornig, W., Carbone, G., Plechacek, J., Amorim, A., Frederico, T., Gordo, P., Abreu, J., Sanz, V., Ruiz-Navas, E.-M. and Martinez-Rojas, J.-A. (2015), "Performance of magnetic-superconductor non-contact harmonic drive for cryogenic space applications", Machines, 3(3), 138-156. https://doi.org/10.3390/machines3030138
  41. Perez-Diaz, J.L., Valiente-Blanco, I., Cristache, C., Sanchez-Garcia-Casarubios, J., Rodriguez, F., Esnoz, J. and Diez-Jimenez, E. (2019), "A novel high temperature eddy current damper with enhanced performance by means of impedance matching", Smart Mater. Struct., 28(2), p. 25034. https://doi.org/10.1088/1361-665X/aafc11
  42. Preumont, A. (2018), Vibration control of active structures: An introduction, Springer International Publishing. https://books.google.es/books?id=oHNLDwAAQBAJ
  43. Riabzev, S., Veprik, A., Vilenchik, H. and Pundak, N. (2009), "Control of dynamic disturbances produced by a pulse tube refrigerator in a vibration-sensitive instrumentation", Cryogenics, 49(1), 7-11. https://doi.org/10.1016/j.cryogenics.2008.08.010
  44. Rivin, E.I. (1995), "Vibration isolation of precision equipment", Precision Eng., 17(1), 41-56. https://doi.org/10.1016/0141-6359(94)00006-L
  45. Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., Int. J., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.3.449
  46. Siyambalapitiya, C., De Pasquale, G. and Soma, A. (2012), "Experimental identification of rare-earth magnetic suspensions for micro and meso scale levitating systems", Smart Struct. Syst., Int. J., 10(2), 181-192. https://doi.org/10.12989/sss.2012.10.2.181
  47. Valiente-Blanco, I., Diez-Jimenez, E. and Perez-Diaz, J.L. (2013), "Engineering and performance of a contactless linear slider based on superconducting magnetic levitation for precision positioning", Mechatronics, 23(8), 1051-1060. https://doi.org/10.1016/J.MECHATRONICS.2013.07.011
  48. Valiente-Blanco, I., Diez-Jimenez, E., Cristache, C., Alvarez-Valenzuela, M.A. and Perez-Diaz, J.L. (2014), "Characterization and improvement of axial and radial stiffness of contactless thrust superconducting magnetic bearings", Tribology Lett., 54(3), 213-220. https://doi.org/10.1007/s11249-013-0204-0
  49. Valiente-Blanco, I., Diez-Jimenez, E., Sanchez-Garcia-Casarrubios, J. and Perez-Diaz, J.L. (2015), "Improving Resolution and Run Outs of a Superconducting Noncontact Device for Precision Positioning", IEEE/ASME Transact. Mechatron., 20(4), 1992-1996. https://doi.org/10.1109/TMECH.2014.2351493
  50. Van Overschee, P. and De Moor, B.L. (1996), Subspace Identification for Linear Systems, Kluwer Academic, Boston, MA, USA.
  51. Yu, J.H., Postrekhin, E., Ma, K.B., Chu, W.K. and Wilson, T. (1999), "Vibration isolation for space structures using HTS-magnet interaction", IEEE Transact. Appl. Supercond., 9(2 PART 1), 908-910. https://doi.org/10.1109/77.783444
  52. Zeynalian, M., Ronagh, H.R. and Dux, P. (2012), "Analytical Description of Pinching, Degrading, and Sliding in a Bilinear Hysteretic System", J. Eng. Mech., 138(11), 1381-1387. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000442
  53. Zhang, T., Wang, Y. and Tamura, A. (2009), "A frequency-spatial domain decomposition (FSDD) method for operational modal analysis", Mech. Syst. Signal Process., 24(5), 1227-1239. https://doi.org/10.1016/j.ymssp.2009.10.024