• 제목/요약/키워드: Vibration Equation

검색결과 1,524건 처리시간 0.038초

시트와 바닥 진동의 위상차가 안락성에 미치는 영향을 평가하기 위한 수식의 제안 (Proposal of an Equation for the Evaluation of Discomfort of a Seated Human Body Due to the Differential Vertical Vibration at the Seat and the Floor)

  • 장한기
    • 한국소음진동공학회논문집
    • /
    • 제12권8호
    • /
    • pp.626-631
    • /
    • 2002
  • A modified equation for the evaluation of discomfort of a seated human body exposed to differential vibration at the seat and the floor was proposed in this paper. Through the review and analysis of the preceding studies, effect of phase difference between the seat and the floor vibration on discomfort were quantitatively identified. The phase effect was shown to be governed by not only phase difference between the two vibrations but both their frequency and the magnitude, which means the present equation for the evaluation of perceptual amount of vibration provided by ISO 2631-1 should be modified. The proposed equation was developed such that the correction function was multiplied to the present equation. The correction function consisted of three parts, each of them represented the effect by phase difference, frequency and vibration magnitude on discomfort respectively.

Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation

  • Fadodun, Odunayo O.
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.303-309
    • /
    • 2019
  • This study investigates axisymmetric fractional vibration of an isotropic hyperelastic semi-linear thin disc with a view to examine effects of finite deformation associated with the material of the disc and effects of fractional vibration associated with the motion of the disc. The generalized three-dimensional equation of motion is reduced to an equivalent time fraction one-dimensional vibration equation. Using the method of variable separable, the resulting equation is further decomposed into second-order ordinary differential equation in spatial variable and fractional differential equation in temporal variable. The obtained solution of the fractional vibration problem under consideration is described by product of one-parameter Mittag-Leffler and Bessel functions in temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem in literature. Finally, and amongst other things, the Cauchy's stress distribution in thin disc under finite deformation exhibits nonlinearity with respect to the displacement fields whereas in infinitesimal deformation hypothesis, these stresses exhibit linear relation with the displacement field.

저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구 (Experimental Study for Prediction of Ground Vibration Responses by the Low-vibration Pile Driving Methods)

  • 강성후;정석규;박선준
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.299-306
    • /
    • 2011
  • This study investigated the SIP-method as a low-vibration, low-noise engineering method. The ground vibrations caused by the SIP-method were measured and analyzed in each step. From the analysis results, quantitative ground vibration values and reliable vibration estimation equations were proposed. Furthermore, the ground vibrations caused by the SIP-method were compared with the ground vibrations caused by other methods presented by existing studies. Based on the vibration estimation equation with 50 % reliability, the ground vibration values by the SIP-method at the distance of 10~150 m corresponded to 17~57 % of the ground vibration values by the equation proposed by Attewell & Famer, and 14~96 % of the ground vibration values by the equation proposed by Prof. Park in his study using a diesel drop hammer. These results showed that the ground vibration reduction effect of the SIP-method was higher those of other general engineering methods. Finally, the permissible scope of work using the SIP-method which meets the domestic vibration standards was presented.

발파 진동식의 신뢰성 (The Reliability of Blast Vibration Equation)

  • 김수일;정상섬;조후연
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.573-582
    • /
    • 1994
  • 본 논문에서는 이미 제안된 발파진동식 중에서 국내의 지질조건에 가장 적합한 식을 연구하였다. 국내에서 측정된 여러 현장의 자료를 이용하여 제안된 발파진동식의 적합성을 분석 검토하였다. 실측자료를 이용한 발파진동식의 산정은 선형회귀분석을 적용하였다. 또한 실측자료로 각 발파진동식을 산출한 후에는 이 발파진동식에 다시 환산거리를 대입하여 진동속도를 산출하였다. 산출한 진동속도와 측정한 진동속도를 비교함으로써 회귀분석한 발파진동식의 신뢰성을 도심지의 소규모발파와 채석장의 대규모발파를 나누어서 살펴보았다. 그 결과 국내의 지질조건에 가장 적합한 식은 미광무국에서 제안한 ROOT SCALE과 CUBE ROOT SCALE 임을 밝혔다. 또한 본 논문에서는 실측자료와 기존의 현장자료를 이용하여 각 암종을 대표할 수 있는 발파진동식을 제안하였다.

  • PDF

시추공 시험발파를 이용한 대전 신탄진 지역의 발파진동 예측 (Prediction of Blasting-induced Vibration at Sintanjin Area, Daejeonusing Borehole Test Blasting)

  • 이충원;박성용
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.55-62
    • /
    • 2018
  • Problems on vibration due to blasting for infrastructure development are getting important because of a civil appeal. Blasting-induced vibration is representative construction pollution, hence, it is possible that a number of environmental damages occur. In this study, borehole test blasting was conducted at Sintanjin area, Daejeon and square root equation with 95% confidence level was proposed for prediction of blasting-induced vibration. The vibration value predicted from this equation was more conservatively evaluated than the values predicted from U.S. Department of Interior, Bureau of Mines (USBM) and Nippon Oil & Fats Co., Ltd. (NOF) equations. Therefore, the proposed equation in this study seems to contribute for safety blast design. However, for optimal blast design, inducing equation for prediction of blasting-induced vibration through the identical test blasting with field construction such as rock slope blasting would be required.

콘크리트의 유동성에 미치는 타설진동의 영향 (Effects of Internal Vibration on Flowability of Fresh Concrete)

  • 최수경
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.77-85
    • /
    • 2000
  • Various concretes are used for construction works depending on the types of structure, building element and method of construction. An internal vibration work is one of the important processes for adequately pouring various concrete into a certain form. This study was undertaken to find out the effects of internal vibration on flowability of fresh concrete by concrete flow test under eight conditions of vibration. Presumable equation models also were created to show all vibration effects without regard to kinds of concrete. As the results of this study, the degree of vibration effects were varied according to the properties of concrete. Acceleration amplitude of vibration that applied to fresh concrete was effective value of the properties of vibration in a viewpoint of flowability. Moreover, This research presents the presumed equation models including variables created by acceleration amplitude and measuring value of vibrated concrete flow test. These models are presumable methods of vibration effects regardless of kinds of concrete.

궤도지지구조물의 진동특성과 예측 (Vibration Characteristics and Prediction of Railroad Track Supporting Structures)

  • 황선근;엄기영;고태훈
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.51-61
    • /
    • 2000
  • In this study, field measurements of vibration on the structures supporting railroad track were performed. The vibration data obtained were analyzed to find out any correlation between its magnitude and several factors such as type of bridges, distance from the track, type of train, frequency characteristics, etc. As a result, the magnitude of vibration turned out to be the highest in the steel bridge, the concrete bridge and steel-concrete combined bridge were the next in descending order. It was also found that the dynamic characteristics of ground were the most important factors among several affecting vibration near by the railroad track. And the empirical ground vibration estimation equation for estimating ground vibration was developed. The proposed equation with respect to distances from the railroad could be easily used for the estimation of ground vibration at the residential areas nearby the track.

  • PDF

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

Determination of natural periods of vibration using genetic programming

  • Joshi, Shardul G.;Londhe, Shreenivas N.;Kwatra, Naveen
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.201-216
    • /
    • 2014
  • Many building codes use the empirical equation to determine fundamental period of vibration where in effect of length, width and the stiffness of the building is not explicitly accounted for. Also the equation, estimates the fundamental period of vibration with large safety margin beyond certain height of the building. An attempt is made to arrive at the simple empirical equations for fundamental period of vibration with adequate safety margin, using soft computing technique of Genetic Programming (GP). In the present study, GP models are developed in four categories, varying the number of input parameters in each category. Input parameters are chosen to represent mass, stiffness and geometry of the buildings directly or indirectly. Total numbers of 206 buildings are analyzed out of which, data set of 142 buildings is used to develop these models. It is observed that GP models developed under B and C category yield the same equation for fundamental period of vibration along X direction as well as along Y direction whereas the equation of fundamental period of vibration along X direction and along Y direction is of the same form for category D. The equations obtained as an output of GP models clearly indicate the influence of mass, geometry and stiffness of the building over fundamental period of vibration. These equations are then compared with the equation recommended by other researcher.

저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구 (Experimental Study for Prediction of Ground Vibration Responses by the Low-Vibration Pile Driving Methods)

  • 강성후;박선준;정석규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.201-207
    • /
    • 2010
  • In this study, the SIP (Soil-cement Injected precast Pile) method among the Low-vibration & Low-noise pile driving methods was decided into study compensation. Ground vibrations by the SIP methods step by step divide and were analyzed. Quantitative response values and ground vibration equations with reliability were presented from findings of this study. Also, vibration responses that are occurred by the SIP method of construction were compared as quantitative with vibration responses by general method of construction that are presented in existent study. Ground vibration values by the SIP method correspond to level of 17 ~ 57% of values that are assumed by the Attewell & Famer's equation, respectively, and these result compares in reliability 50% and separated distance 10 ~ 50 m. Also, those values were analyzed that correspond to level of 14 ~ 96% of ground vibration values by the Prof. Park's equation, respectively. Construction limit extents, separation distances from vibration occurs position, were presented that can satisfy domestic criteria for vibration control for the SIP methods. Those presented in this paper were divided newly according to reliability.

  • PDF