Browse > Article
http://dx.doi.org/10.12989/cac.2019.23.5.303

Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation  

Fadodun, Odunayo O. (Department of Mathematics, Obafemi Awolowo University)
Publication Information
Computers and Concrete / v.23, no.5, 2019 , pp. 303-309 More about this Journal
Abstract
This study investigates axisymmetric fractional vibration of an isotropic hyperelastic semi-linear thin disc with a view to examine effects of finite deformation associated with the material of the disc and effects of fractional vibration associated with the motion of the disc. The generalized three-dimensional equation of motion is reduced to an equivalent time fraction one-dimensional vibration equation. Using the method of variable separable, the resulting equation is further decomposed into second-order ordinary differential equation in spatial variable and fractional differential equation in temporal variable. The obtained solution of the fractional vibration problem under consideration is described by product of one-parameter Mittag-Leffler and Bessel functions in temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem in literature. Finally, and amongst other things, the Cauchy's stress distribution in thin disc under finite deformation exhibits nonlinearity with respect to the displacement fields whereas in infinitesimal deformation hypothesis, these stresses exhibit linear relation with the displacement field.
Keywords
axisymmetric; finite deformation; fractional vibration; thin disc;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Akinola, A.P. (1999), "An energy function for transversely isotropic elastic material and Ponyting effect", J. Appl. Math. Comput., 6(3), 639-649. https://doi.org/10.1007/BF03009956.
2 Akinola, A.P. (2001), "An application of nonlinear fundamental problems of a transversely isotropic layer in finite elastic deformation", Int. J. Nonlin. Mech., 36(2), 307-321. https://doi.org/10.1016/S0020-7462(00)00016-0.   DOI
3 Bashmal, S., Bhat, R. and Rakheja, S., (2010), "Frequency equations for the in-plane vibration of circular annular disks", Adv. Acoust. Vib., 2010, Article ID 501902, 8. http://dx.doi.org/10.1155/2010/501902.
4 Batra, R.C. and Iaccarino, G.L. (2008), "Exact solutions for radial deformations of a functionally-graded isotropic and incompressible second order elastic cylinder", Int. J. Nonlin. Mech., 43(5), 383-398. https://doi.org/10.1016/j.ijnonlinmec.2008.01.006.   DOI
5 Benferhat, R., Tahar, H.D., Said-Mansour, M. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.   DOI
6 Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.   DOI
7 Bouboulas, A.S. and Anifantis, N.K. (2011), "Vibration analysis of a rotating disk with crack", Mech. Eng., 2011, Article ID 727120, 13. doi:10.5402/2011/727120.
8 Burago, N.G., Nikitin, A.D., Nikitin, I.S. and Yushkovsky, P.A. (2016), "Stationary vibrations and fatigue failure of compressor disks of variable thickness", Procedia Struct. Integrity: 21st Eur. Conf. Fract., ECF 21, 2, 1109-1116. https://doi.org/10.1016/j.prostr.2016.06.142.   DOI
9 Chen, W., Ye, L. and Sun, H. (2010), "Fractional diffusion equations by the Kansa method", Comput. Math. Appl., 59(5), 1614-1620. https://doi.org/10.1016/j.camwa.2009.08.004.   DOI
10 Ciarlet, P.G. (1998), Mathematical Elasticity Volume I: Three-Dimensional Elasticity, Elsevier Science Publisher, Amsterdam.
11 Das, D., Sahoo, P. and Saha, K. (2010), "Free vibration analysis of a rotating annular disc under uniform pressure loading", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(3), 615-634. https://doi.org/10.1243/09544062JMES1662.   DOI
12 Deng, H. and Ouyang, H., (2010), "Vibration of spinning discs and powder formation in centrifugal atomization", Proc. R. Soc. A: Math. Phys. Eng. Sci., 467(2126), 361-380. https://doi.org/10.1098/rspa.2010.0099.   DOI
13 Du, R., Cao, W.R. and Sun, Z.Z. (2010), "A compact difference scheme for the fractional diffusion-wave equation", Appl. Math. Model., 34(10), 2998-3007. https://doi.org/10.1016/j.apm.2010.01.008.   DOI
14 Fadodun, O.O. and Akinola, A.P. (2017a), "Bending of an isotropic non-classical thin rectangular plate", Struct. Eng. Mech., 61(4), 437-440. https://doi.org/10.12989/sem.2017.61.4.437.   DOI
15 Fadodun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017b), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025.   DOI
16 Hasheminejad, S.M., Ghaheri, A. and Vaezian, S. (2013), "Exact solution for free in-plane vibration analysis of an eccentric elliptical plate", Acta Mechanica, 224(8), 1609-1624. https://doi.org/10.1007/s00707-013-0829-y.   DOI
17 Fadodun, O.O., Layeni, O.P. and Akinola, A.P. (2017c), "Fractional wave propagation in radially vibrating non-classical cylinder", Earthq. Struct., 13(5), 465-471. https://doi.org/10.12989/eas.2017.13.5.465.   DOI
18 Fu, Z.J., Chen, W. and Yang, H.T. (2013), "Boundary particle method for Laplace transformed time fractional diffusion equations", J. Comput. Phys., 235, 52-66. https://doi.org/10.1016/j.jcp.2012.10.018.   DOI
19 Gorman, D.G., Reese, J.M., Horacek, J. and Dedouch, K. (2001), "Vibration analysis of a circular disc backed by a cylindrical cavity", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 215(11), 1303-1311. https://doi.org/10.1243/0954406011524685.   DOI
20 Hutton, D.V. (2004), Fundamentals of Finite Element Analysis, Mc Graw Hill.
21 Jaroszewick J. (2017), "Natural frequencies of axisymmetric vibration of thin hyperbolic circular plates with clamped edges", Int. J. Appl. Mech. Eng., 22(2), 451-457. DOI: 10.1515/ijame- 2017-0028.   DOI
22 Kumar, R., Reen, L.S. and Garg, S.K. (2017), "Effects of time and diffusion phase-lags in a thin circular disc with axisymmetric heat supply", Cogent Math., 4(1), 1369848. doi.org/10.1080/23311835.2017.1369848.   DOI
23 Li, X. (2014), "Analytical solutions to a fractional generalized two phase Lame-Clapeyron Stefan problem", Int. J. Numer. Meth. Heat. Fluid Flow, 24(6), 1251-1259. https://doi.org/10.1108/HFF-03-2013-0102.   DOI
24 Sharma, J.N., Sharma, D. and Kumar, S. (2012), "Stress and strain analysis of rotating FGM thermoelastic circular disk by using FEM", Int. J. Pure Appl. Math., 73(3), 339-352.
25 Lychev, S.A, Lycheva, T.N. and Manzhirov, A.V. (2011), "Unsteady vibration of a growing circular plate", Mech. Solid., 46(2), 325-333. https://doi.org/10.3103/S002565441102021X.   DOI
26 Lyu, P., Du, J., Liu, Z. and Zhang, P. (2017), "Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material", Compos. Struct., 178(15), 246-259. https://doi.org/10.1016/j.compstruct.2017.06.065.   DOI
27 Senjanovic, I., Hadzic, N. and Vladimir, N. (2015), "Vibration analysis of thin circular plates with multiple openings by the assumed mode method", Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ., 231(1), 70-85. https://doi.org/10.1177/1475090215621578.   DOI
28 Zhang, H., Yuan, H., Yang, W. and Zhao, T. (2017), "Research on vibration localization of mistuned bladed disk system", J. Vibroeng., 19(5), 3296-3312. https://doi.org/10.21595/jve.2017.17822.   DOI
29 Treeby, B.E. and Cox, B.T. (2010), "Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian", J. Acoust. Soc. Am., 195(5), 2741-2748. https://doi.org/10.1121/1.3377056.   DOI
30 Ursoniu, C., Pepa, D., Tufoi, M. and Gillich G.R. (2017), "The influence of stiffening ribs on the natural frequencies of butterfly valve disks", Int. Conf. Appl. Sci.: Mater. Sci. Eng., 163(1), 012041. doi:10.1088/1757-899X/163/1/012041.
31 Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194(15), 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.   DOI
32 Zur, K.K. (2015), "Green's function in frequency analysis of circular thin plates of variable thickness", J. Theor. Appl. Mech., 53(4), 873-884. doi: 10.15632/jtam-pl.53.4.873.   DOI
33 Zur, K.K. (2016b), "Green's function for frequency analysis of thin annular plates with nonlinear variable thickness", Appl. Math. Model., 40(5-6), 3601-3619. https://doi.org/10.1016/j.apm.2015.10.014.   DOI
34 Zur, K.K. (2018), "Quasi-Green's function approach to free vibration analysis of elastically supported functionally graded circular plates", Compos. Struct., 183(1), 600-610. https://doi.org/10.1016/j.compstruct.2017.07.012.   DOI
35 Zur, K.K. (2016a), "Green's function approach to frequency analysis of thin circular plates", Bull. Polish Acad. Sci. Tech. Sci., 64(1), 181-188. DOI: 10.1515/bpasts-2016-0020.   DOI