• 제목/요약/키워드: Vibration Durability Test

검색결과 122건 처리시간 0.018초

온도상태에 따른 신축관 이음의 수명예측에 관한 연구 (A Study for Lifespan Prediction of Expansion by Temperature Status)

  • 오정수;이봉수
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.424-429
    • /
    • 2018
  • 본 연구에서는 플랜트 설비 부품류 중 충격에 취약한 신축관 이음을 대상으로 수충격 발생 시 신축관 이음의 신축량을 유압식 액추에이터의 작동데이터로 적용하여 진동내구 시험을 수행하였다. 진동내구 시험 시 내구수명의 가속 요소로 신축관 내부의 온도상태를 가정하고 온도상태를 $30^{\circ}C$부터 $50^{\circ}C$$65^{\circ}C$로 가속화한 진동내구 시험을 진행하였다. 각 조건별 온도상태별 수명데이터들은 아레니우스 모델식을 따른다고 가정하고 각 수명데이터를 선형화하여 선형식의 상수값과 활성화 에너지 계수를 유도하였다. 또한 유도된 모델식으로부터 $85^{\circ}C$ 경우의 예측 수명과 $85^{\circ}C$ 온도상태에서의 시험 수명결과와 비교를 통해 작은 편차 범위내에서 유도된 모델식의 유효성을 검증하였다. 한편, 시험 중과 시험 후 발견된 신축관의 고장모드에서는 누수 및 벨로우즈 부 내부 슬리부의 이탈과 내부변형 등을 확인할 수 있었다. 향후 본 연구는 진동내구 수명의 가속요인인 온도상태 외 압력상태 등 다양한 수명변수를 적용한 복합수명예측 모델식을 개발하고 검증할 예정이다.

레이저용접을 이용한 친환경 알루미늄 Fuel Filler Neck 개발 (Development of eco-environmental Aluminium Fuel Filler Neck using Laser welding)

  • 이병진;정상영;황현태;정학순;최흥원
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.484-489
    • /
    • 2011
  • Nowadays, the automobile manufactures make a great efforts to reduce manufacturing cost, body weight and to develop eco-environmental parts in order to be more competitive and solve global warming. For these reasons, materials of automobile's parts are changed over from general carbon steel and stainless steel to plastic and Aluminum. And, laser welding technology is introduced to apply welding between aluminum parts. In this paper, the data of laser welding parameters is collected through lots of the experiment according to the material, welding speed and laser power to apply laser welding in Aluminum fuel filler neck assembly. After manufacturing prototype of aluminum fuel filler neck, vibration durability test, tensile strength test and salt water test are applied to verify product's satisfied function.

비포장 노면의 가혹도 관리에 관한 연구 (A Study on the Severity Control of Unpaved Test Courses)

  • 양진생;구상화;이정환;강도경;이상호
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.47-57
    • /
    • 2007
  • The vibration environment essentially companied by vehicle operation on the road is determined by the shape of road surface, which is called profile. In general, the profile and severity of unpaved road is an important issue in the reliability of durability test for vehicles. In order to maintain severity of unpaved road, it is necessary to develop profilometer system. We developed profilometer system which is composed of data processing computer, power unit, air compressor and sensors. This paper focuses on the severity management of unpaved test courses using neural networks. This paper presents the maintenance range for cross-country course in CPG(Chang-won Proving Ground) and the evaluation of similarity degree between unpaved roads.

3축 로드 시뮬레이터 링크부의 메카니즘 설계 (A Mechanism Design of the 3-axial Road Simulator Linkage)

  • 정상화;류신호;김종태;이규태;장완식
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.140-147
    • /
    • 2003
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the link unit which is able to realize the 3 element forces such as vertical force, lateral force, and longitudinal force that are applied to the road simulator is designed. Also, the designed link is verified with kinematics and inverse-kinematics. From this results, the designed factor satisfied the maximum stroke so that it satisfied the requirements for 3-axial road simulator.

차량용 스테빌라이져 링크의 유격과 이상소음 발생의 상관관계 (Relationships between Free Gaps and Abnormal Noises of Vehicle Stabilizer Links)

  • 한창완;김한종;유영재;박성훈
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.28-34
    • /
    • 2017
  • The vehicle stabilizer link is one of the suspension components that reduces the bumping and rolling during vehicle driving. However, this stabilizer link could be a source of the abnormal noises when its free gaps have higher than normal values. Therefore, the current study aims at investigating the quantitative relationships between the abnormal noises and free gaps of the vehicle stabilizer links, as well as the length of time that the vehicle stabilizer links could be used without generating abnormal noises. In this study, the abnormal noises were measured based on the magnitude of the stabilizer link vibration, while the free gaps were quantified through the force-displacement curves of the stabilizer links. Harsh durability tests were also conducted in order to quantify the operating cycles of the stabilizer links before generating the abnormal noises, along with the concomitant measurements of the free gaps. The current results showed that the abnormal noises of the stabilizer links were detected when its free gaps were larger than 0.12 mm. However, the free gaps of the stabilizer links, which are bigger than 0.1 mm, produced the abnormal noises at 1.5 million cycles under harsh durability test conditions. A parametric study in the future that would reflect the different shapes and sizes of the stabilizer links for diverse vehicles could determine more generalized relationships between the abnormal noises and free gaps of the vehicle stabilizer links.

비선형 유한요소 해석프로그램(LS-DYNA)을 이용한 차량 동력학해석 (Vehicle Dynamic Analysis Using Nonlinear Finite Element Analysis Program(LS-DYNA))

  • 민한기;이현;양인영
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.36-42
    • /
    • 2002
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness(NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the virtual proving ground(VPG) approach for obtaining the dynamic characteristics. VPG approach uses a nonlinear, dynamic, finite element code(LS-DYNA3D) which expands the application boundary outside the classic linear, antic assumptions. VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

MR 브레이크의 내구성에 따른 제어성능평가 (Control Performance Evaluation of MR Brake Depending on Durability)

  • 김완호;박진하;양순용;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.660-666
    • /
    • 2016
  • This paper presents performance comparison results of magneto-rheological (MR) brake in the sense of wear characteristics. To create wear circumstance, the brake is operated in 100 000 cycles by DC motor. To make wear test in same design parameters such as the radius of the housing, ferromagnetic disc and gap size, small sample of stainless are inserted in housing of MR brake. The performances of brake are compared between the initial stage (no wear) and 100 000 revolution cycles operated stage (wear). At each circumstance, torque of the brake is measured and compared by applying step current and sinusoidal control input. The controller used in this work is a simple, but effective PID controller. It is demonstrated that the wear behavior is more obvious as the operating cycle is increased in the torque control process.

자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험 (Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine)

  • 손인수;허상범;안성진
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

셰일 셰이커 기초 내구성 평가에 관한 연구 (A Study for Basic Durability Assessment of Shale Shaker)

  • 오정수;김성민;황종덕
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.296-302
    • /
    • 2019
  • 본 연구에서는 이수순환시스템 핵심 장비 중의 하나인 셰일 셰이커 시작품의 핵심 부품을 선정하여 기초 내구성 평가를 수행하고 분석하였다. 기초 내구성 평가의 경우, 바이브레이터 모터(이하, 모터)가 장시간 운전에 따른 모터 베어링의 수명과 모터로 부터 유발된 진동에 의한 지지 스프링의 강성저하가 장비의 내구성에 적지 않은 영향을 미칠 수 있을 것이란 가정을 두었다. 모터 연속운전에 있어, 전 초기 진동 가속도의 P-P 수준은 0.72 g 수준 이었으나 운전 100 시간 경과 후, 진동 가속도의 P-P 수준은 1.26 g로 급격히 상승함을 볼 수 있었으며, 진동 상승의 원인분석을 위해 볼 결함주파수 분석기법을 통해 베어링 결함을 추정할 수 있었다. 또한, 셰일 셰이커의 가진 조건을 피로내구시험에 적용하여 시험 2,000 시간 경과 시, 스프링의 강성이 약 3.78 % 감소함을 확인 할 수 있었다. 향후 본 연구는 스프링 강성의 저하가 셰일 셰이커의 입자제거 효율이 미치는 영향 분석과 그에 따른 고장수명에 예측에 관한 후속 연구를 수행 할 예정이다.