• Title/Summary/Keyword: Vibration Class

Search Result 264, Processing Time 0.033 seconds

울진 원자력 5&6호기 Motor Operated Valve의 Equalizing Bypass Pipe Line에 대한 피로수명예측

  • 이진구;황인현;이억섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.219-224
    • /
    • 2001
  • 본 연구는 울진 원자력발전소 5&6호기 Class 1680, Parallel Gate 16-inch, Motor Operated Valve (Valve ID No. SI-653 and 654)에 부착되는 Equalizing Bypass Pipe Line (EBPL)이 밸브 시스템에 발생시키는 진동하중에 의한 영향을 동적 피로안정성 관점에서 규명하기 위하여 수행된 것이다. Equalizing Bypass Line Part의 최종 설계된 형상을 Fig. 1에 나타내었다. 본 해석을 위하여 운용 중 발생되는 부착부의 잔류진동 레벨이 3축 방향 가속도로 측정되었다. 본 연구에서는 해당 시변 가속도 데이터를 바탕으로 정확한 시간-응력 이력을 얻기 위하여 시간영역에서 천이 진동해석 (Transient Vibration Analysis)을 수행하였으며, 이를 실제적인 피로해석에 활용하였다. 시간영역에서의 천이 진동해석 및 피로해석을 위해 상용유한요소 해석프로그램인 ANSYS (Version 5.6)를 활용하였다.(중략)

  • PDF

A Study on the Insulation Degradation Properties for Stator Form-wound Winding of Traction Motors in Urban Transit E.M.U (철도차량용 견인전동기의 형권 고정자 코일에 대한 절연열화 특성 연구)

  • Kim, K.J.;Chae, S.H.;Wang, J.B.;Park, H.J.;Lee, I.W.;Hur, I.G.;Ha, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.452-454
    • /
    • 1999
  • In this paper, sample coils for stator form-wound winding of traction motor were made for the accelerative thermal degradation composed of heat, vibration, moisture and overvoltage. In progress of test periods, diagnosis tests such as insulation resistance, dielectric loss and partial discharge were investigated. Reliability and expected life were evaluated on the insulation system for 200 class traction motor considering various environmental stress.

  • PDF

Condition Diagnosis by the Complex Accelerating Degradation for fault Prediction & estimation of reliability on the traction motor - Insulation Resistance & Polarization Index Properties (견인전동기의 고장예측 및 신뢰성 평가를 위한 복합가속열화 상태진단 - 절연저항 및 성극지수 특성 연구)

  • Wang, Jong-Bae;Byun, Yoon-Sub;Baek, Jong-Hyen;Park, Hyun-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1374-1376
    • /
    • 2000
  • In this paper, sample coils for stator form-wound winding of traction motor were tested by the accelerative thermal degradation, which composed of heat, vibration, moisture and overvoltage applying. Reliability and expected life were evaluated on the insulation system for 200 class traction motor. After aging of 10 cycles, insulation resistance and PI properties were investigated as diagnosis tests in the range of $20{\sim}160^{\circ}C$. Analysis of polarization properties was performed on the base of do current-time change.

  • PDF

Standardization Design & Manufacturing of Traction Motor for Urban Transit EMU (도시철도 표준전동차용 견인전동기의 국산화 설계 및 제작)

  • Wang, J.B.;Lee, S.G.;Park, H.J.;Ha, H.S.;Hur, I.G.;Lee, I.W.;Park, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.424-426
    • /
    • 1999
  • In this paper, the design characteristics, the manufacturing process and the results of performance test on the AC traction motor for urban transit standard E.M.U which is newly developed with applying standardization specification will be introduced. It is reviewed that the design and performance analysis on conventional motors considering system correlation and design constraint and the design optimization through an analysis of electro-magnetic, thermal and dynamic properties. The properties of factory products manufactured by 200 Class VPI process exhibit a excellent performance with a lower noise and vibration, higher efficiency and power factor etc.

  • PDF

Properties of Thermal Performance on Stator Coil of Traction Motor by Accelerated Test (견인전동기 고정자 코일의 열적 열화특성)

  • Park Hyun-June;Lee Chang-Moo;Lee Han-Min;Jang Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.606-610
    • /
    • 2003
  • The 200 class insulation system which adopted to traction motor have excellent dielectric strength but weaken to thermal stress therefore deterioration phenomena analysis according to thermal stress is necessary. Accelerated thermal aging tests have been used to determine thermal reliability of stator coils used as traction motor in electric multiple unit. The conventional aging test is carried on according to IEC 60034-18-31 and IEEE Std. 275-1992. Variation in insulation resistance, P.I, capacitance, dielectric loss($tan{\delta}$) and partial discharge are measured during the aging cycle. Sample coils for traction motor were tested by accelerated aging test which composed of heat, vibration and moisture. Reliability and expected life were evaluated on the insulation system for traction motor.

  • PDF

Structural Design of Composite Blade and Tower for Small Wind Turbine System

  • Jang, Mingi;Lee, Sanggyu;Park, Gwanmun;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • This work is to propose a structural design and analysis procedure for development of the low noise 1kW class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. The proposed structural configuration has a sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. Moreover Investigation on structural safety of tower was verified through structural analysis by FEM.

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Fault Prediction & Reliability Estimation of the Traction Motor by the Complex Accelerating Degradation and Condition Diagnosis (견인전동기의 복합가속열화 상태진단에 의한 고장예측 및 신뢰성 평가)

  • 왕종배;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.763-766
    • /
    • 2000
  • In this paper, stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the 200 Class insulation system of traction motors. The complex accelerative degradation was performed by periods during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of 20∼160$^{\circ}C$. Relationship among condition diagnosis test was analyzed to find an dominative degradation factor and an insulation state at end-life point.

  • PDF

Development and Evaluation for the Insulated Coupling Test Machine of a Large Wind Turbine (대형 풍력터빈 절연커플링 시험장치 개발 및 평가)

  • Ju, Sung Ha;Kim, Dong Hyun;Oh, Min Woo;Kim, Su Hyun;Kang, Jong Hun;Bae, Jun Wu;Lee, Hyoung Woo;Kim, Kyung He
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.543-556
    • /
    • 2016
  • In this work, an insulated coupling test machine for a 5-MW-class wind turbine was designed and developed, along with the public performance testing of a 3-MW-class wind turbine. The results of the device design, development requirements, functional considerations, structural vibration analysis, and the evaluation of the insulated coupling test machine are presented in this study. For the coupling models, thick fiberglass composite pipe insulation, fabricated by filament winding, was considered. Results of three-dimensional finite element analysis conducted using both solid element and shell element modeling were analyzed and compared, considering the effect of thickness. In addition, results from the nonlinear finite element analysis of multiple leaf springs of the laminated disk pack structure were verified and compared with experimental data.

The Composite Effects of Composite Truss using High Strength T-shaped Steel (고강도 T형강을 사용한 합성트러스의 합성효과)

  • Chae, Dae Jin;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.637-645
    • /
    • 2012
  • The composite action in truss beam is generally achieved by providing shear connectors between the steel top chord of the truss and the concrete slab. The composite sections have greater stiffness than the sum of the individual stinesses of the slab and truss. Therefore, steel trusses that act compositely with concrete slabs can carry larger load and are stiffer and less prone to transient vibration. The crack pattern and deflection of the beam of the composte truss were investigated by using of 600MPa class steel in this study. The test results were compared with the results for the noncomposite trusses. Test results were also compared with the results of composite trusses by using of 400MPa class steel. It was ascertained that the case of high strength steel is more efficient compared with the case of SS400 steel for T-shaped steel.