• Title/Summary/Keyword: Vesicles

Search Result 816, Processing Time 0.044 seconds

Studies on Molecular Plasticity of Bergmann Glia following Purkinje Cell Degeneration (조롱박신경세포의 변성에 따른 버그만아교세포의 면역조직학적 연구)

  • Yoon, Chul-Jong;Cho, Sa-Sun;Lee, Ha-Kyu;Park, Min-Chul
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.165-176
    • /
    • 2005
  • Studies on molecular plasticity of Bermann glia (BG) after harmaline-induced Purkinje cell (PC) degeneration in the rat cerebellum. The intimate structural relationship between BG and PC, evidenced by the sheathing of the PC dendrites by veil-like process from the BG has been suggestive of the close functional relationship between these two cell types. However, little is known about metabolic couplings between these cells. This study designed to investigate molecular plasticity of BG in the rat cerebellum in which PCs were chemically ablated by harmaline treatment. Immunohistochemical examination reveals that harmaline induced PC degeneration causes a marked glial reaction in the cerebellum with activated BG and microglia aligned in parasagittal stripes within the vermis. In these strips, activated BG were associated with upregulaion of metallotheionein, while GLAST and was down regulated, as compared with nearby intact area where both BG are in contact with PCs. The data from this study demonstrate that BG can change their phenotypic expression when BG loose their contact with PCs. It is conceivable that activated BG may upregulate structural proteins, metallothionein expression to use for their proliferation and hypertrophy; metallothionein expression to cope with oxidative stress induced by PC degeneration and microglial activation. On the contrary, BG may down regulated expression of GLAST because sustained loss of contact with PCs would eliminate the necessity for the cellular machinery involved glutamate metabolism. In conclusion, BG might respond man to death of PCs by undergoing a change in metabolic state. It seems possible that signaling molecules released from PCs regulates the phenotype expression of BG. Also ultrastructures in the organelles of normal PC and BG are distinguished by mitochondrial appearance, and distributed vesicles at the synaptic area in the cytoplasm.

Dynamin II Expression and Morphological Comparison of NIH3T3 and NIH3T3 (ras) Cells (NIH3T3와 NIH3T3(ras) 세포에서 Dynamin II 발현 및 형태적 비교)

  • Lee, Chul-Woo;Kim, Su-Gwan;Choi, Jeong-Yun;Choi, Baik-Dong;Bae, Chun-Sik;Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.121-128
    • /
    • 2005
  • It has been known that ras signaling transduction leads to cell proliferation and migration including various adaptor molecules. Dynamin protein has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. Dynamin was classified into three isoforms: dynamin I is only expressed in neuronal tissue, dynamin II is expressed ubiquitously in all tissue but that of dynamin III is confined to testis. We have reported in previous study that Grb2, binding to ras, was associated with dynamin II in NIH3T3 cells. Therefore we have tried to identify the relative expression of dynamin II according to overexpressed ras protein in ras oncogene transfected cells (NIH3T3 (ras)). For the detection of differential expression of dynamin II, we have used immunofluorescent staining and western blot methods in NIH3T3 and NIH3T3 (ras) cells. Next we have described the morphological differences between NIH3T3 and NIH3T3 (ras) cells using SEM and TEM. From these experiments dynamin II was highly expressed in NIH3T3 (ras) cells. NIH3T3 cells was transformed to more spindle shape with many cell process by transfection of ras oncogene. Moreover dynamin II was more concentrated in endocytotic membrane of the NIH3T3 (ras) cells compared to that of NIH3T3 cells. The present results suggested that dynamin II may involve the intermediate messenger in Ras signaling transduction pathway.

Development of the Glandular Trichomes in Trapping Leaves of Drosera Species (끈끈이주걱속 점착식 포충엽의 분비모 발달)

  • Lee, Hye-Jin;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • The trapping leaves of Drosera capture insects by secreting sticky mucilage from numerous glandular trichomes (GTs) that are developed on the leaf epidermis. The present study examines and compares the structural features of those trichomes in Drosera binata and D. pygmy with the use of light and electron microscopy. The study focuses primarily on the development and differentiation pattern of the GTs during growth. Upon examination, the upper and lower epidermis were readily distinguishable by the features of GTs in developing leaves. In particular, the GTs were dense in the upper epidermis and along the leaf margin. In D. binata, the capitate GTs with elongated stalk and sessile peltate GTs were found most commonly, whereas only capitate GTs with varying degrees of the stalk length were observed in D. pygmy. Up to ca. $2.2{\sim}3.4\;mm$ long capitate GTs were seen in the leaf margins of D. binata and ca. $3.7{\sim}4.2\;mm$ long GTs having racket-like head with adaxial hemispheric structures, otherwise known as tentacles, were noted in the leaf margin of D. pygmy. The peltate GTs were found to be distributed in the lower epidermis of D. binata. In both species, head cells were dense with cytoplasm containing high numbers of Golgi bodies, ER, mitochondria and small vesicles. Secretory materials accumulated within numerous small vacuoles, then fused together to form a single large vacuole, which serves as a secretory cavity. Flection movement of the marginal GTs and leaf blade GTs, and increased mucilage secretion from the head cells upon contact with prey during the capturing process are considered to be major factors in their active insectivorous mechanism. The findings of this study will be useful in comparisons to similar findings in other species that form adhesive trapping leaves, such as Drosophyllum or Pinguicula., further contributing a better understanding of the function and structure of the trapping leaves of carnivorous plants.

A Ultrastructural Study on the Cerebral Ganglion of the African Giant Snail, Achatina fulica (아프리카 왕달팽이 (Achatina fulica) 뇌신경절 (Cerebral ganglion)의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.303-313
    • /
    • 1999
  • In this paper, five kinds of neurosecretory cells-light green (LG) cell, dark green (DG) cell, caudo-dorsal (CD) cell, blue green (BG) cell, and yellow (Y) cell- and neuropils in the cerebral ganglion of the African giant snail, Achatina fulica, were observed with an electron microscope. The following results were obtained. The LG cells are circular or ovoid in shape, and about $60{\mu}m$ in size. The nucleus and cytoplasm of the LG cell look light due to their electron-low density. Large granular chromatins are evenly developed in the karyolymph, where round nucleoli are also found. In the cytoplasm, electron -high dense round granules of $0.4{\mu}m$ in average size are crowded. The DG cells are ovoid in shape, and $50\sim20{\mu}m$ in size. These relatively electron-high dense cells were rarely found. In their cytoplasm, cell organelles such as rough endoplasmic reticulum and mitochondria are found together with electron -high dense round granules of $0.2{\mu}m$ in average size. The CD cells are ellipsoidal cells densely distributed in caudo-dorsal parts of the cerebral ganglion. They have large nuclei compared with the cytoplasm. The developed granular heterochromatins are observed in the karyolymph, and lots of small round granules of $0.12{\mu}m$ in average size in the cytoplasm. The 3G cells, rarely found around endoneurium of the cerebral ganglion, take the shapes of long ellipses. They look dark due to their electron -high density. In the cytoplasm, small round granules of $0.1{\mu}m$ in average size are found. The Y cells are the smallest among the neurosecretory cells($9\times6.6{\mu}m$ in size). They are found mostly between the medio-dorsal parts and the caudo-dorsal parts of the cerebral ganglion. In the cytoplasm, tiny round granules of $0.08{\mu}m$ in average size form a group. The neuropils are found in the middle of the cerebral ganglion. In the axon ending, round granules with electron -high density ($0.07\sim0.03{\mu}m$ in diameter) and lucent vesicles ($0.03{\mu}m$ in diameter) are found in large quantities. They are excreted in the state of exocytosome formed by the invagination of the limiting membrane of the axon ending.

  • PDF

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A (Ras-GTPase-activating protein SH3 domain-binding proteins 2, G3BP2와 KIF5A C-말단 꼬리 영역과의 결합)

  • Jeong, Young Joo;Jang, Won Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1191-1198
    • /
    • 2017
  • Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.

Structural Features of Various Trichomes in Vitex negundo during Development (방향성 좀목형(Vitex negundo)모용의 구조적 분화발달)

  • Lee, Seung-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.35-45
    • /
    • 2006
  • Plants of Vitex negundo are known to develop numerous trichomes throughout their body, where certain trichome types have been believed to be one of the plausible structures for the unique scents. In the current study. structural aspects of the trichomes have been examined in leaves and stems of Vitex negundo using TEM and SEM. Trichome types as well as structural changes that occurred in certain trichomes during secretion have been mainly focused. Three type of glandular trichomes and two types of non-glandular trichomes were developed in the epidermis of young and mature Vitex negundo plants. The glandular trichomes included the peltate type (Type 1), the capitate type (Type 2), and degraded capitate type (Type 3), whereas the non-glandular warty trichomes contained the multicellular (Types 4) and unicellular type (Type 5). Type 1 and 2 consisted of head and stalk cells, but their number and size were different. One secretory cavity was formed from the four head cells in the former, but only two head cells were involved in the latter. The cytoplasmic density in the head cell was quite high and in particular, sER and Golgi bodies were well developed. At initiation of their development, the cuticle layer of the head cells separated from the outer tangential wall to form a secretory cavity. Subsequently the cavity expanded acropetally and a large number of secretory vesicles continuously produced from the head cells until they filled the entire cavity. The cavity contained materials that would be soon discharged into intercellular spaces and/or into the air. The cavity began to decrease the volume by contracting at initial secretion but degrade rapidly within short time. It has been suggested that the mode of secretion in V. negundo is probably the eccrine secretion, since no break or rupture of the cavity has been observed during examination. Contrastingly Type 3 exhibited deterioration of the head cell at early stage. Type 4 was about $110{\sim}190{\mu}m$ long, consisting of $2{\sim}3$ cells, and distributed more in the adaxial epidermis compared to the abaxial surface. However, $20{\sim}30{\mu}m$ long Type 5 was extremely dense in both epidermis. Among several trichome types, Type 1 and 2 probably play an important role in discharging unique aromatic scents in plants of V. negundo.

Post-Exposure Prophylaxis of Varicella in Family Contact by Oral Acyclovir (가족 내 수두 환자와 접촉 후 경구 Acyclovir의 예방효과)

  • Kim, Sang Hee;Kim, Jong Hyun;Oh, Jin Hee;Hur, Jae Kyun;Kang, Jin Han;Koh, Dae Kyun
    • Pediatric Infection and Vaccine
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • Purpose : To determine wether varicella can be prevented by administration of oral acyclovir(ACV) during the incubation period of the disease. Methods : Starting 9 days after exposure to the index case in their families, ACV(40 mg/kg/day in four divided doses) was given orally to 20 exposed children for 5 days. Their clinical features was compared with those of 20 control subjects. Antibody titers to VZV were measured in both group 1 week and 4 weeks after finishing the oral ACV administration. Results : The mean age of family members with varicella(51.4 months) were significantly high compared to that of ACV prophylaxis group(28.5 months) and control group(31 months) (P<0.05). Among the 12 children with ACV prophylaxis who completed follow up blood sampling, nine children were diagnosed as VZV infection on the serologic test(75%). Among them six children showed positive VZV IgM on the first blood sample and two children showed serocoversion to positive IgM on the second test after ACV prophylaxis. One child who was negative on both IgM and IgG, showed positive IgG on the second test. The incidence of fever and severity of skin rashes were significantly low in children received oral ACV than in the control group. No or reduced number of maculopapular eruption were observed in the oral ACV group compared to multiple vesicles of the control group. Conclusion : In the present study, we observed that oral ACV prophylaxis to the family contacts is effective in reducing severity of skin lesion. It is likely that oral ACV 9 days after contact prevents or reduces blood dissemination of VZV. Little is known about clinical effect and immunity to the virus in exposed children with no varicella symptom after treatment. We propose the checking up antibody to VZV some period after oral ACV, and considering vaccination to whom with no antibody. But further more studies are needed to practical application of oral ACV for the postexposure prophylaxis of varicella.

  • PDF

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

Responses of VA mycorrhizal Fungus, Glomus mosseae, on the Growth and Nutrition of Mulberry tree (VA 내생균근균, Glomus mosseae,가 뽕나무의 생장과 영양에 미치는 영향)

  • 김중채;문재곡
    • Journal of Sericultural and Entomological Science
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 1986
  • This study was carried out to acguire some basic information on nutritional and lhysiological effects of vesicular arbuscular mycorrhizae(VAM) on mulberry trees inoculated with Glomus mosseae, Gerd. & Trap. grown in clay for 65 days and treated with 5 different levels of phosphorus, ie 30, 60, 120, 240, 480 ppm as (NH4)2 HPO4. At the End of the expermental period the levels of fixed phosphate in the soil was measared. And the native VAM fungi were collected to select the most effective VAM species on mulberry tree. The nutritional and biochemical effects of VA mycorrhizae on the mulberry leaves were also studied. Those results are as follow. 1. The mulberry trees grown in clay and inoculated with VAM were heavier in shoot dry weight as much as 197% than uninoculated plants. But in vermioulite, uninoculated mulberry trees were heavier as much as 135% than inoculated. 2. The rates of endo mycorrhizal formation in clay was highest at 60 ppm level of phosphorus, and vesicles in roots were formed in 240ppm and 480ppm level of phosphorus, but not in 30ppm, 60ppm and 120ppm. 3. The greatest growth responses of VAM inoculation was found at 60ppm level of hosphorus, and the optimum phosphorus level for VAM responese appeared to be 60ppm. 4. VAM was also to absorb soil-fixed phosphate. VAM abosrbed Fe-bound phosphate most efficiently and Ca-bound phosphate with ease but not Al-bound phosphate and Al-Fe occluded phosphate. 5. Three species of Gigaspora and one species of Glamus growing naturally in mulberry plantations were collected and tested for the growth responses. Gigaspora tricalipta and Gigaspora calospora revealed the greatest growth responses on mulberry tree among tested VAM fungi. 6. Mulberry leaves inoculated with VA mycorrhizal fungi contained 9.8% more phosphate and 15.2% more nitrogen, 22.2% more water-soluble carbohydrates and 15.2% more proteins than uninoculated plants. 7. The electrophoretic pattern of mulberry leaf protein inoculated with VAM fungi has 19 bands. 8. The patterns of peroxidase zymogram and Amulase zymogram were different between the mulberry leaves inoculated and uninoculated with VA mycorrhizal fungi. The peroxidase zymogram of inoculated leaves has 1 less majour band than unioculated leaves The amylase zymogram of inoculated leaves has 2 bands near the +pole, but that of uninoculated leaves has 1 band near the $pole.

  • PDF