• Title/Summary/Keyword: Vertical offset

Search Result 108, Processing Time 0.023 seconds

The Characteristic Analysis of the Cross-shaped Microstrip Slot Antenna with the Reflector for Permittivity and Height of Dielectrics

  • Jang, Yong-Woong;Shin, Ho-Sub;Oh, Dong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.183-186
    • /
    • 2000
  • We analyzed the cross-shaped microstripline-fed slot antenna with the reflector using FDTD(Finite-Difference Time-Domain) method in this paper. The proposed antenna uses RR Duroid-5880 substrate(relative permittivity 2.2 and height(1.578 mm) of dielectrics), and compares the optimized results of other kind substrates. The maximum bandwidth of the proposed antenna is from 1.91 GHz to 5.21 GHz, which is approximately 1.437 octave for the VSWR $\leq$ 2. It was found that the bandwidth of the antenna depend highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The experimented data for the VSWR and the radiation pattern of the antenna are also represented.

  • PDF

Experimental Study on Shape Machining Characteristics of Composite Honeycomb Core (복합재 하니콤 코어의 형상가공 특성에 관한 실험적 연구)

  • Han, Seung-Woo;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.28-35
    • /
    • 2014
  • A composite honeycomb core is widely used for lightweight aircraft materials. However, the composite honeycomb core coupled with metal-cutting machining processes does not make a very good match. This paper describes an experimental study of the shape-machining characteristics of a composite honeycomb core, in which a five-axis gantry machine is used. The experimental conditions of the offset allowance, tooling condition and feed rate were applied. The shape machining characteristics of a flat surface, a vertical surface, and a concave surface are evaluated by comparing the machining shape and burr characteristics.

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

DETERMINATION OF GPS RECEIVER CLOCK ERRORS USING UNDIFFERENCE PHASE DATA

  • Yeh, Ta-Kang;Chung, Chen-Yu;Chang, Yu-Chung;Luo, Yu-Hsin
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.277-280
    • /
    • 2008
  • Enhancing the positioning precision is the primary pursuit of GPS users. To achieve this goal, most studies have focused on the relationship between GPS receiver clock errors and GPS positioning precision. This study utilizes undifferentiated phase data to calculate GPS clock errors and to compare with the frequency of cesium clock directly, thus verifying estimated clock errors by the method used in this paper. The relative frequency offsets from this paper and from National Standard Time and Frequency Laboratory of Taiwan match to $1.5{\times}10^{12}$ in the frequency instability, suggesting that the proposed technique has reached a certain level of quality. The built-in quartz clocks in the GPS receivers yield relative frequency offsets that are 3 to 4 orders higher than those of rubidium clocks. The frequency instability of the quartz clocks is on average two orders worse than that of the rubidium clock. Using the rubidium clock instead of the quartz clock, the horizontal and vertical positioning accuracies were improved by 26-78% (0.6-3.6 mm) and 20-34% (1.3-3.0 mm), respectively, for a short baseline. These improvements are 7-25% (0.3-1.7 mm) and 11% (1.7 mm) for a long baseline. Our experiments show that the frequency instability of clock, rather than relative frequency offset, is the governing factor of positioning accuracy.

  • PDF

Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline using 2-layer Dielectrics (2층 유전체를 사용한 십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 해석)

  • 장용웅;신호섭
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.69-74
    • /
    • 2000
  • The bandwidth of microstrip slot antenna with T-shaped feed line was a wider than one of the conventional feeding structure. When the slot antenna with bi-directional radiator wants to radiate only one direction, the reflector must be set up seperately. But this antenna doesn't need set up reflector. And then we proposed to a new method of a directional slot radiator with a cross-shaped feedline including the reflector using 2-layers dielectric materials. It is calculated waves and electric field distribution in the time domain by using FDTD method. We also are calculated return loss, VSWR, input impedance, and radiation pattern in the frequency domain by Fourier transforming the time domain results, respectively. It was found that the bandwidth of this antenna changes as length($\I_s$) and width($\W_s$) of slot, length of the horizontal feedline($\I_d$), length of the vertical feedline($\I_u$) and offset sensitively. After optimizing the parameters of design, the maximum bandwidth was measured as 1,850MHz at the center frequency 2.5 GHz.

  • PDF

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data (합성탄성파자료를 이용한 지진파 간섭법의 가상반사파 영상 특성)

  • Kim, Ki Young;Park, Iseul;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

The Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline (십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 특성 분석)

  • Jang, Yong-Ung;Han, Seok-Jin;Sin, Ho-Seop;Kim, Myeong-Gi;Park, Ik-Mo;Sin, Cheol-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.35-42
    • /
    • 2000
  • A cross-shaped microstripline-fed printed slot antenna having wide bandwidth Is presented in this paper. The proposed antenna is analyzed by using the Finite-Difference Time-Domain (FDTD) method. It was found that the bandwidth of the antenna depends highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The maximum bandwidth of this antenna is from 1.975 GHz to 4.725 GHz, which is approximately 1.3 octave, for the VSWR $\leq$ 2. Experimental data for the return loss and the radiation pattern of the antenna are also presented. and they are in good agreement with the FDTD results.e FDTD results.

  • PDF

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.

The Impact of COVID-19 and Korea's New Southern Policy on Its Global Value Chain

  • Yoo, Jeong-Ho;Park, Seul-Ki;Cheong, In-Kyo
    • Journal of Korea Trade
    • /
    • v.24 no.8
    • /
    • pp.19-38
    • /
    • 2020
  • Purpose - The Korean government has been promoting the New Southern Policy (NSP) prior to the onset of the COVID-19 pandemic, which damage global value chain (GVC). The purpose of this paper is to emphasize that the NSP should be developed to provide tangible support in corporate GVC adjustment, away from diplomatic activities in order to offset GVC losses due to COVID-19 and expand export capabilities. Design/methodology - Two research methodologies are combined for this paper: A computational general equilibrium (CGE) model is used to estimate the impacts of the COVID-19 pandemic and NSP on Korea's exports, and the decomposition methodology (Wang, Wei and Zhu, 2013) to evaluate the stability of GVC. The conventional CGE model was modified to obtain an estimate for decomposition. The research methodology adopted in this study was attempted for the first time, and it can be widely used in future GVC research. Findings - Results found the effects of COVID-19 reduced Korea's total exports by 27% and GVC by more than 30%. In particular, VA in Korea's exports to the NSP region was found to have a huge impact in heavy industries and textiles, and its exports to Vietnam seemed to suffer the largest loss in GVC among ASEAN countries. If the NSP is implemented properly, it appears that it could offset much of the negative impacts of COVID-19, implying the importance of the effectiveness of the NSP. Originality/value - Many papers have assessed the NSP descriptively, and the GVC has been a topic for many publications. However, the impact of COVID-19 on Korea's GVC with the NSP countries has not been quantitatively studied. This paper emphasizes that the NSP should be pursued based on the results of quantitative analysis. In addition, the research methodology of this paper can be used for other GVC research with relevant modifications.