Browse > Article
http://dx.doi.org/10.7582/GGE.2018.21.2.094

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data  

Kim, Ki Young (Division of Geology and Geophysics, Kangwon National University)
Park, Iseul (Department of Geological Sciences, University of Canterbury)
Byun, Joongmoo (Department of Earth Resources and Environmental Engineering, Hanyang University)
Publication Information
Geophysics and Geophysical Exploration / v.21, no.2, 2018 , pp. 94-102 More about this Journal
Abstract
To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.
Keywords
seismic interferometry; virtual reflection image; synthetic seismic data; stretch mute; processing noise;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin, F.-C., Ritzwoller, M. H., and Snieder, R., 2009, Eikonal tomography: Surface wave tomography by phase front tracking across a regional broadband seismic array, Geophys. J. Int., 177(3), 1091-1110.   DOI
2 Mehta, K., Kiyashchenko, D., Jorgensen, P., Lopez, J., Ferrandis, J., and Costello, M., 2010, Virtual source method applied to crosswell and horizontal well geometries, The Leading Edge, 29(6), 712-723.   DOI
3 Mikesell, D., Wijk, K., Calvert, A., and Haney, M., 2009, The virtual refraction: Useful spurious energy in seismic interferometry, Geophysics, 74(3), A13-A17.   DOI
4 Schuster, G. T., 2001, Theory of daylight/interferometric imaging: Tutorial: 63rd Conference and Technical Exhibition, European Assoc. Geoscientists and Engineers, Extended Abstracts, A32.
5 Schuster, G. T., 2009, Seismic Interferometry, Cambridge University Press.
6 Snieder, R., 2004, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69(4), 046610-1-046610-8.   DOI
7 Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A., 2010, Tutorial on seismic interferometry: Part 1 - Basin principles and applications, Geophysics, 75(5), 75A195-75A209.   DOI
8 Wapenaar, K., Draganov, D., Thorbecke, T., and Fokkema, J., 2002, Theory of acoustic daylight imaging revised, 72nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2269-2272.
9 Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists.
10 Bakulin, A., and Calvert, R., 2004, Virtual source: New method for imaging and 4D below complex overburden, 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2477-2480.
11 Bakulin, A., and Calvert, R., 2006, The virtual source method: Theory and case study, Geophysics, 71(4), SI139-SI150.   DOI
12 Bakulin, A., Mateeva, A., Mehta, K., Jorgensen, P., Ferrandis, J., Herhold, I. S., and Lopez, J., 2007, Virtual source appli- cations to imaging and reservoir monitoring, The Leading Edge, 26(6), 732-740.   DOI
13 Bharadwaj, P., Schuster, G., Mallinson, I., and Dai, W., 2012, Theory of supervirtual refraction interferometry, Geophys. J. Inter., 188(1), 263-273.   DOI
14 Campillo, M., and Paul, A., 2003, Long-range correlations in the diffuse seismic coda, Science, 299(5606), 547-549.   DOI
15 Cho, H.-M., Baag, C.-E., Lee, J. M., Moon, W. M., Jung, H., and Kim, K. Y. 2013, P- and S-wave velocity model along crustal scale refraction and wide-angle reflection profile in the southern Korean Peninsula, Tectonophysics, 582(1), 84-100.   DOI
16 Claerbout, J., 1968, Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33(2), 264-269.   DOI
17 Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Amer., 67(6), 1529-1540.
18 de Hoop, A. T., 1988, Time-domain reciprocity theorems for acoustic wave fields in fluids with relaxation, J. Acoust. Soc. Am., 84(5), 1877-1882.   DOI
19 Draganov, D., Wapenaar, K., and Thorbecke, J., 2004, Passive seismic imaging in the presence of white noise sources, The Leading Edge, 23(9), 889-892.   DOI
20 Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K., 2009, Reflection images from ambient seismic noise, Geophysics, 74(5), A63-A67.   DOI
21 Dziewonski, A. M., and Anderson, D. L., 1981, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25(4), 297-356.   DOI
22 Ferrandis, J., Mateeva, A., Jorgensen, P., Lopez, J., and Dijkerman, H., 2009, Application of virtual-source technology to the Zuidwending gas storage project, The Leading Edge, 28(3), 296-301.   DOI
23 Fokkema, J. T., and van den Berg, P. M., 1993, Seismic applications of acoustic reciprocity, Elsevier Scientific Publ. Co., Inc.
24 Hooke, R., 1665, Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon, The Royal Society.
25 Hurich, C., and Deemer, S., 2013, Combined surface and borehole seismic imaging in a hard rock terrain: A field test of seismic interferometry, Geophysics, 78(3), B103-B110.   DOI
26 Kang, T.-S., and Shin, J. S., 2006, Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea, Geophys. Res. Lett., 33(17), L17303-1-L17303-5.   DOI
27 Kennett, B. L. N., and Engdahl, E. R., 1991, Traveltimes of global earthquake location and phase identification, Geophys. J. Int., 105(2), 429-465.   DOI
28 Kim, K. Y., Lee, J. M., Moon, W., Baag, C.-E., Jung, H., and Hong, M. H., 2007, Crustal structure of the southern Korean peninsula from seismic waves generated by large explosions in 2002 and 2004, Pure Appl. Geophys., 164(1), 97-113.   DOI