• Title/Summary/Keyword: Vertical motion control

Search Result 204, Processing Time 0.032 seconds

Static Obstacle Crossing Locomotion of a Four-Legged Walking Machine (4-족 보행 로봇의 정역학적 장애물 횡단 보행에 관한 연구)

  • Park, Sung Ho;Chung, Gwang Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.152-162
    • /
    • 1996
  • A four-legged Walking Machine can move on the plain terrain with mobility and stability and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra time to cross those obstacles and the stability should be considered during motion. The main objective is the study a Quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a Quadruped can move on any mixed rough terrain as 4-legged terrestrial vertebrates move. Each leg of a Quadruped has a limited walk space called a walking volume and this is very important to deter- mine the crossing capability in a static analysis. A Quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain information from scanner and finally can move with mobility and stability.

  • PDF

Numerical Modelling Techniques of VPMM for Manta Type UUV (만타형 UUV의 VPMM 전산해석기법 개발)

  • Sang-Eui Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.151-151
    • /
    • 2023
  • An accurate prediction of the hydrodynamic maneuvering darivatives is essential to desing a robust control system of a UUV(unmanned underwater vehicle). Typically, these derivatives were estimated by either the towing tank experiment or semi-empirical methods. With the enhancement of high performance computing capacity, a numerical analysis using computational fluid dynamics has reach the level of experiment. Therefore, the aims of the present research are to numerically develop a computational model for the vertical planar motion mechanism of a UUV and to estimate the hydrodynamics loads in 6-DOF. The target structure of the present study was manta type UUV (12meter length). The numerical model was developed in 1/ 6 model scale. Numerical results were compared with the results of the towing tank experiment for validation. In the present study, a commercial RANS-based viscous solver STARCCM+ (ver 17.06) was used.

  • PDF

Maneuver Analysis of Full-Vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1125-1130
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological (ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

  • PDF

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

Design and Manufacture of Road Simulator for Suspension Durability Test (서스펜션 내구시험용 Road Simulator의 설계 및 제작)

  • 최경락;황성호;전승배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.155-160
    • /
    • 2001
  • The road simulator system can simulate the longitudinal, lateral, and vertical movement changed by road conditions and vehicle dynamic characteristics while driving. This system provides the durability evaluation of vehicle suspensions. The system consists of hydraulic actuators, link mechanism, and servo controller. The hydraulic actuators are specially manufactured using low friction seals to endure high speed movement. The link mechanism is designed in order to minimize the dynamic effect during motion and remove the interference between 3axes actuators. The servo controller is composed of sensors, sensor amplifiers - displacement transducers and load cells, and an industrial PC with DSP board which calculates the control algorithm to control hydraulic actuators. The test results are included to evaluate the performance of this simulator comparing vehicle driving test.

  • PDF

Weightless Control of Air Hoist using Compressed Air (압축공기를 이용한 에어호이스트의 무중력화 제어)

  • 이강호;배상일;홍대선;정원지
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.144-144
    • /
    • 2000
  • Air balance hoists are widely used in handling of heavy materials in industry. Currently used air balance hoists adopt manual switches for vertical motion, thus the operator has a difficulty in operating of the switches and handling of material simultaneously. To overcome this difficulty, this study develops a weightless air-balance-hoist system using compressed air. This system memorizes the weight of material in terms of pneumatic pressure with a pneumatic circuit. Such memory of the material weight is used for achieving weightless handling of materials. Through a series of experiments, handling forces and the response of the system for various material weights are analyzed. The results show that the developed system can be used for weightless handling o( heavy materials.

  • PDF

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

Weight Transfer Patterns Under the Different Golf Swing Types: a Case Study Involving a Low Handicap Player and a High Handicap Player (I) (골프스윙 방법에 따른 체중이동 패턴에 관한 연구:숙련자와 비숙련자의 케이스 스터디(I))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.31-49
    • /
    • 2005
  • The purpose of this study was to analyze the weight transfer patterns under the different golf swing types which are full swing control swing and putting stroke. Two women golfers participated in this study, one(165cm, 94.3kg)being classified as a low-handicap(LH)player, the other(165cm, 54.5kg) being classified as a high-handicap(HH) player. Both players are right-handed. Two force plates(Kistler, 9286AA) were synchronized with a motion capture system(Qualisys ProReflex MCU240). Anteriorposterior, mediolateral, and vertical forces were used as an indicator of the pattern of swing. Four discrete positions which are address, top of backswing impact, and finish were identified as an event and three phases which are backswing downswing, and follow-through between he events were also identified. The results showed that, at impact, the total force was 1.24BW ring the full swing 1.17BW during the control stroke, 1.00BW during the putting stroke. Depending on the golf swing types, the differences are existed. At impact, the distribution of forces is different with a low-handicap(LH) player and a high-handicap(HH) player. A LH player has 26% in right foot and 74% in left foot during the full swing 49% in right foot and 51% in left foot during the control swing 49% in right foot and 51% in left foot during the putting stroke. A HH, on the other hand, has 74% in right foot and 26% in left foot during the full swing 62% in right foot and 38% in left foot during the control swing 54% in right foot and 46% in left foot during the putting stroke. From address to top of backswing the amount of vertical forces are changed 43:57(right foot: left foot) to 76:24 during the full swing 47:53(right foot: left foot) to 75:25 during the control swing 50:50(right foot: left foot) to 54:46 during the putting stroke. The biggest weight transfer pattern took place in full swing and the control swing is next, and the putting stroke is the final.

Active Damping Control of an Air Bearing Stage with Magnetic Preloads (능동 자기예압 공기베어링 스테이지의 진동감쇠 제어)

  • Ro, Seung-Kook;Kim, Soohyun;Kwak, Yoonkeun;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1321-1325
    • /
    • 2013
  • In this paper, we proposed an air bearing stage with active magnetic preloads in vertical directions compensating motion errors and attenuating vibrations to improve dynamic characteristics. This preloaded design gives simpler configuration of the stage, and active control of preload can be used for compensating motion errors by feedforward method. To improve dynamic characteristics, vibration of the table is monitored by an accelerometer, and controlled by a DSP based digital controller with integrator and band pass filters for suppressing roll and pitch vibration modes. The modes were evaluated by measuring frequency response functions, and compared with compensated responses. This showed effective results for suppressing poorly damped regenerative vibration of air bearings.

Design, Fabrication and Test of Piezoelectric Actuator Using U-Shape PZT Strips and Lever Structure for Lateral Stroke Amplification (수평방향 변위증폭을 위해 U-형상의 PZT 스트립과 지렛대 구조를 이용한 압전구동형 액추에이터의 설계, 제작 및 실험)

  • 이준형;이택민;최두선;황경현;서영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1937-1941
    • /
    • 2004
  • We present lateral actuated piezoelectric actuator using U-shaped PZT strip and lever structure for the RF switch application. In the previous study of RF switch, they used horizontal contact switch fabricated by thin film metals. However, thin film metals could not generate large contact force due to low stiffness. In this work, we suggest lateral contact switch which makes large contact force by increasing stiffness. In addition, we use PZT actuator for the high force actuation. Generally actuator using thin film PZT moves to the vertical direction due to the neutral axis shift. Therefore we need lateral motion generation mechanism based on the thin film PZT actuator. In order to increase lateral motion of thin film PZT actuator, we use U-shaped PZT actuator using residual stress control. Also, thin film PZT actuator can generate very small lateral motion of 120${\times}$10$^{-6}$ ${\mu}{\textrm}{m}$/V for d$_{31}$ mode, thus we suggest lever structure to increase stroke amplification. From the experimental study, fabricated PZT actuator shows maximum lateral displacement of 1 ${\mu}{\textrm}{m}$, and break down voltage of the thin film PZT actuator is above 16V.