• Title/Summary/Keyword: Vertical motion

Search Result 1,127, Processing Time 0.022 seconds

Dynamic response characteristics of an innovative turretless low motion FPSO hull in central GoM ultra-deep waters

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.173-223
    • /
    • 2022
  • In oil and gas industry, FPSO concept is the most popular hull form and ship shaped hull form dominants the FPSO market. Only a non-ship-shaped hull in operations with minor market shares is the cylindrical FPSO hull with medium to small storage capability. To add contracting options and competitions to reduce field development costs, an innovative turretless low motion hull, eco-FPSO, with 1MM bbls oil storage capacity and suitable for installing topsides modulars and equipping with regular SCRs, was first introduced in Zou (2020a). Dynamic characteristic responses of the eco-FPSO compared to the traditional SS-FPSO hull and DD-Semi platform are presented and discussed in this paper, suitability and feasibility of the proposed hull have been demonstrated and validated through extensive analyses in 10-yrp, 100-yrp and 1,000-yrp hurricanes in ultra-deepwater central GoM.

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

Estimation of critical speed and running performance for swing motion bogie of railway freight car (화물수송용 스윙모션보기의 임계속도와 주행성능 평가)

  • 함영삼;오택열
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2003
  • In this paper the dynamic characteristics of a Swing Motion Bogie, such as a critical speed and a carbody vibration, are investigated in reply to the request of the Meridian Rail Corporation in the United States. Also described are experimental results of the maximum speed, the derailment coefficient, the lateral force, the vertical force, the vibration acceleration and steady state lateral acceleration measured from main line tests.

Evaluation of critical speed & running performance for Swing Motion Bogie (스웡모션보기의 임계속도와 주행성능 평가)

  • 함영삼;허현무;오택열
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.892-897
    • /
    • 2002
  • The research was requested by Meridian Rail Corporation in United States. The Swing Motion Bogie can application by Korea style if synthesize study result of bogie strength evaluation, bogie dynamic characteristics analysis, actual test(maximum speed, derailment coefficient, lateral force, vertical force, vibration acceleration, steady state lateral acceleration) etc..

  • PDF

Multi-directionally Movable Lambda Shape Transducer for Ultrasonic Motor (초음파 모터용 람다형 다방향 변환자)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The transducer for multi-directionally movable ultrasonic motor having lambda shaped vibrators has been proposed and designed. The two branches cross at a right angle with each other at the tip. FEM analyses of lambda shaped transducer were carried out to find vibration modes for ultrasonic motor. The lambda shaped transducer has one symmetric mode and two anti-symmetric modes. The symmetric mode generates the normal direction motion of the tip. The lateral and vertical direction motion of the tip are excited by two anti-symmetric modes. The normal and lateral direction motions made an lateral elliptic trajectory. And the normal and vertical direction motions made an vertical elliptic trajectory normal to previous one. The transducer with 1 mm in thickness and 25 mm in length has been fabricated and evaluated. The resonance frequencies of the transducer was 32 kHz and 103 kHz. The tangential and vertical vibration displacement of the transducer having the lateral elliptic trajectory were $1.5{\mu}m\;and\;1.1{\mu}m$, respectively at the driving voltage of 100 Vpp and frequency of 32 kHz and 103 kHz. And the tangential and vertical vibration displacement of the transducer having the vertical elliptic trajectory were $0.4{\mu}m\;and\;0.2{\mu}m$, respectively at the same driving condition.

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

The Kinematic Analysis of the Rybalko Motion on the Horizontal Bar (철봉 리발코(Rybalko) 동작의 운동학적 분석)

  • Lee, Byoung-Won
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.109-117
    • /
    • 2006
  • The purpose of this study was done in order to investigate the Kinematical variables of the Rybalko motion on the Horizontal bar using the 3-dimensional cinematographic method. For this study, three excellent athletes take part in a 2003 Daegue universid game were chosen. The subject,s Rybalko motion was filmed with S-VHS camera at the speed of 60 fields per second and digitized the each fields. And the Kwon3D 3.1 version program was employed to obtain 3-dimensional data. As a result of this study. 1. A total time spent for performing Rybalko skill was Mean $2.52{\pm}0.13sec$. From starting down swing to releasing right hand the Mean $0.84{\pm}0.24sec$ was taken. 2. In the event 3 of Rybalko motion, that is, the moment which the right-hand is released on the bar, the center of mass must is employed at the position above the horizontal line of bar. In this research, the average vertical displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 3. In the event 5, that is, the moment which the right-hand is catched again on the bar, the center of mass is employed at the position before the vertical line of bar. In this research, the average horizontal displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 4. It has been seen that, at the moment of release of right-hand, lateral variation of center of mass is 13.395cm, vertical variation of center of mass is 7.41cm Thus, it is concluded that lateral variation of center of mass should be reduced for high grade to be acquired. 5. It has been founded that high speed of down swing influences speed of up swing, and that, in the motion of twist, the horizontal speed is little changed.

Safety Improvement in the Curvature Motion of a High Speed Segway (고속 세그웨이의 곡선 운동에서의 안정성 향상)

  • Kim, Jihyeon;Bang, Jinuk;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • In this paper, the slope of the footplate is adjusted to compensate for the centrifugal force with a series elastic actuator (SEA) attached to the Segway's body to improve the cornering characteristics during turning. To ensure Segway's driving safety in the curvature motion, it is necessary to compensate for the centripetal force by tilting the footplate to generate inward force from gravity. When the footplate is tilted under the control of SEA, the vertical load on both wheels has been changed accordingly. The frictional force of the wheel has been changed by the change of the vertical force, which requires adjustment of driving torque to keep the curvature trajectory. That is, the driving torque has been controlled to keep the curvature trajectory considering the frictional force caused by the turning motion. Four SEAs are attached to the footplate to control the slope of the footplate and the real curvature motion has been demonstrated to verify the effects of SEAs in the high- speed curvature motion.

Modeling and Simulation of the 6 DOF Motion of a High Speed Planing Hull Running in Calm Sea (정수중을 활주하는 고속선의 6자유도 운동 모델링 및 시뮬레이션)

  • Yoon, Hyeon Kyu;Kang, Namseon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • When a planing hull straightly runs and turns, its floating position and pitch angle are changed depending on its speed, and large transient motion happens. In this paper, six degrees of freedom(6 DOF) equations of motion, which could simulate the motion of a planing hull, are established. Static and dynamic forces in vertical plane are modeled using pre-calculated displacements and metacentric heights depending on various draft, lift under bottom, and vertical damping coefficients which are used to tune the final motion. Hydrodynamic coefficients in horizontal plane at various equilibrium state are calculated by using Lewandowski's empirical formula and the speed-dependent equilibrium state are calculated beforehand by Savitsky's formula. The speed effects are considered by curve-fitting the coefficients at various speed to the polynomials. Accelerating, decelerating and backing, turning, and zig-zag are simulated and compared with the sea trial results, and it is confirmed that the speed reduction, roll, and pitch during such maneuvers of sea trial and simulation are well consistent.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.