• Title/Summary/Keyword: Vertical drain

Search Result 228, Processing Time 0.025 seconds

Analysis of PVD Degree of Consolidation with Various Core Types (코어형태에 따른 연직배수재의 압밀도 분석)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Zhanara, Nazarova
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to acquire areas for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground subsidence especially when their strength is low and depth is deep, we need to accurately analyze the engineering properties of soft grounds and find general measures for stable and economic design and management. Vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under pre-loading and various types of vertical drain are used with there discharge capacity. Under field conditions, discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experiment study were carried out to obtain the discharge capacity of six different types of vertical drains by utilizing the large-scale model tests and discharge capacity, degree of consolidation with the time elapsed.

  • PDF

Evaluation of Discharge Capacity with PVDs Types in Waste Lime Area (폐석회지반에서의 연직배수재의 종류에 따른 통수능 평가)

  • Shin, Eun-Chul;Kim, Gi-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • Recently, the demand for industrial and residential lands are being increased with economic growth, however, it is difficult to acquire the land for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground settlement especially when their strength is low and depth is deep, it needs to accurately analyze the engineering properties of soft grounds and find general measurement for stabilization and economic design and management. Prefabricated vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under the preloading and various types of vertical drain are being used with the discharge capacity. Under field conditions, the discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains, and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experimental study were carried out for two different types of vertical drains by utilizing the large-scale model tests and waste lime.

  • PDF

The Application of Converts Slag for Vertical Drains (제강슬레그의 연직배수재로서의 활용에 관한 연구)

  • 김용수;정승용;한기현;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.623-630
    • /
    • 2000
  • In this study, it was to investigate the possibility to use the converts slag, by product in producing steel as a substitute material with sand that is used fur a civil construction materials, in developing techniques to use converts slag to improve soft clay ground. To do this, it was investigated the physical and mechanical properties of the converts slag as a civil construction material. For this, cylindrical cell consolidation with a single vertical drains and large scale soil box test were performed. Through large scale soil box test, the applicability of the converts slag to the present vertical drain techniques which is dependent on sand and plastic drains was studied. As a result of that, it was found that the shape of inserted drains was maintained after completing a consolidation process of a soft clay with slag drains. In addition, we could find that the slag drains showed the similar results with sand drains in soft clay by analyzing the effect of acceleration of consolidation.

  • PDF

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Drain Capacity of PVD Filter Considering the Field Condition (현장 토질특성을 고려한 연직배수재 필터의 성능평가)

  • Han, Sung-Su;Jeong, Kyeong-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • PVD (Prefabricated Vertical drain) consists of filter and core. An effective PVD has two basic filtration functions ; first to retain soil particle ; and second, to allow water to pass from the soil into the PVD core without clogging or blinding. Clogging which reduces the permeability of the geotextile filter jacket is caused by fine particles penetrating into the geotextile filter jacket in relatively low permeability soil conditions. As clogging performance increases gradually, excess pore water flow from soil is resisted and finally consolidation delays. Current soil-geotextile filter system criteria are generally based on relationships between a representative pore size of the geotextile and particle size of the soil. In Korea, PVD geotextile filter system criteria have been applied by only testing AOS (Apparent Opening Size) of filters without evaluating the filtration and clogging performance on soil-geotexile filter systems. Therefore, the filtration tests on soil-geotexile filter systems were conducted in order to evaluate the filtration and clogging performance with 3 kinds of geotextile filters. On these tests, we have applied geotextile filter system criteria on PVD in ${\bigcirc}{\bigcirc}$ sites.

  • PDF

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

Development and Applicability of Discharge Capacity Testing Apparatus Using Penetration Method (관입식 복합 통수능 시험기의 개발과 적용성)

  • Yoo, Nam Jae;Kim, Dong Gun;Park, Byung Soo;Jun, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.313-320
    • /
    • 2008
  • The discharge capacity testing apparatus using penetration method, being able to simulate in laboratory the condition of embedding plastic board drains in field, was developed to investigate consolidation characteristics of ground and to figure out discharge capacity of drains. The developed apparatus with a mandrel and penetrating device was designed to insert PBD into the ground prepared by previously applied pressure, being different from the conventional testing method that the drain was installed and the ground material was poured subsequently. Discharge capacity tests with the conventional apparatus as well as the newly developed one were performed to assess the applicability of the latter. As a result of tests, the conventional method showed delayed consolidation due to overall disturbance of ground and local deformation of drain caused by inhomogeneity of ground. Therefore discharge capacity of drain with the conventional apparatus was measured more or less larger than the expected values whereas discharge capacity with new one could be measured similar to the actual value in field.

The Proposal of a New Drainage System without Incline of Piping and Experiment on Drainage Flow Characteristics (구배가 없는 신배수시스템의 제안 및 배수유동 특성에 관한 실험적 연구)

  • Cha Young-Ho;Yee Jurng-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.452-458
    • /
    • 2005
  • In Korea, pumping pipe using gravity way by water is most popular method in drainage system. But, it is difficult to repair a drainpipe in this method because the drain pipe diameter is increased as using this method. In this research, we propose a new drainage system. The system aim for an adaptedness with buildings, freedom of plan, construction and renewal in water pipe equipments, etc. The new system is not need of incline of piping, and it uses drainage power that is changed potential energy by high velocity flow as making Siphonage at vertical pipe. Therefore, the diameter of piping can decreased than existing piping system established in the ceiling. Also because connecting position will be located at the lower part, it is changed the potential energy of drainage to the high velocity flow. In addition, drainage will be smooth because the fixture drain is linked by each drain pipes.