• Title/Summary/Keyword: Vertical design method

Search Result 952, Processing Time 0.028 seconds

Linear quadratic regulators of two-time scale systems with eigenvalue placement in a vertical strip (수직스트립으로의 고유치배치에 의한 두시간스케일 시스템에서의 선형2차 동조기 구현)

  • 엄태호;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.198-202
    • /
    • 1987
  • The regulator problem can be considered as some impulsive disturbance rejection one. In this point of view, the rate of decay is one of important factors for regulation and depends on how negative the real parts of the eigenvalues of closed-loop system. The algorithm that the closed-loop system has eigenvalues lying within a vertical. strip is useful for rapid disturbance rejection. This paper presents a design method for a linear quadratic regulator of two-time scale system with eigenvalues in a vertical strip by use of time-scale separation property.

  • PDF

Ride Sensitivity Analysis of a Train With Non-linear Suspension Elements (비선형 현가요소를 가진 철도차량의 승차감 민감도 해석)

  • 전형호;탁태오
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.40-47
    • /
    • 2002
  • In this study, and analytical method for ride sensitivity analysis of a train with non-linear suspension elements are proposed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train are parameterized using polynomial interpolation. Vertical dynamic model of a three-body train running on straight rail with the predetermined roughness expressed in terms of spectral density function is set up and its equations of motion for ride analysis are derived. Using the direct differentiation method, sensitivity equations of the vertical dynamic model with respect to design parameters associated with non-linearity of suspensions are obtained. Based on the sensitivity analysis, improvement of ride is achieved by varying appropriate suspension parameters.

Development of A Simple Design Monograph for Track Sublayers (궤도 하부구조설계를 위한 간이 설계 모노그래프 개념 개발)

  • Park, Mi-Yun;Lee, Jin-Ug;Lee, Seong-Hyeok;Park, Jae-Hak;Lim, Yu-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.428-435
    • /
    • 2011
  • In general, thickness of the sublayers under track is designed based on concept of vertical soil reaction value or vertical stiffness. However, this design method cannot take consideration into soil-track interaction under repetitive load, traffic condition and velocity of the train. Furthermore, the reinforced roadbed soils experience complex behavior that cannot be explained by conventional stress-strain relation expressed as soil reaction value k. The reinforced roadbed soils also can produce cumulative permanent deformation under repetitive load caused by train. Therefore new design method for the sublayers under track must be developed that can consider both elastic modulus and permanent deformation. In this study, a new design concept, a rule-of-thumb, is proposed as the form of design monograph that is developed using elastic multi-layer and finite element programs by analyzing stress and deformation in the sublayers with changing the thickness and elastic modulus of the sublayers and also using data obtained from repetitive triaxial test. This new design concept can be applied to design of the reinforced roadbed before developing full version of design methodology that can consider MGT, axial load and the material properties of the layers. The new design monograph allows the user to design the thickness of the reinforced roadbed based on permanent deformation, elastic modulus and MGT.

  • PDF

Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms (CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구)

  • 김태연;이윤규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

A Research of Nozzle Spray System of Vertical Type Etcher (수직형 식각 장비의 노즐 분사 시스템에 대한 연구)

  • Kim, Jum-Young;Joo, Kang-Wo;Yoon, Jong-Kook;Ryu, Sun-Joong;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • The recent PCB (Printed Circuit Board) wet etcher has been needed to process pattern within $20{\mu}m$ width on a $20{\mu}m$ thick board. A previous PCB etcher can be used with multiple points of roller rolls or slips off a board. Also, the damage of the board by contacting the roller increases the friction defects. A vertical type boards transporting process is developed to solve the problems of boards friction and sagging in a horizontal etcher. In this research, CFD (Computational Fluid Dynamics) method is used to design an improved spray nozzle including the critical part of etcher, and establish the design method. Meanwhile, major spray characteristics are expected in diverse nozzle types and variables. Lastly, diverse simulation results are adapted to design an improved nozzle and spray system.

Foundation Differential Settlement Included Time-dependent Elevation Control for Super Tall Structures

  • Zhao, Xin;Liu, Shehong
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Due to the time-dependent properties of materials, structures, and loads, accurate time-dependent effects analysis and precise construction controls are very significant for rational analysis and design and saving project cost. Elevation control is an important part of the time-dependent construction control in supertall structures. Since supertall structures have numerous floors, heavy loads, long construction times, demanding processes, and are typically located in the soft coastal soil areas, both the time-dependent features of superstructure and settlement are very obvious. By using the time-dependent coupling effect analysis method, this paper compares Shanghai Tower's vertical deformation calculation and elevation control scheme, considering foundation differential settlement. The results show that the foundation differential settlement cannot be ignored in vertical deformation calculations and elevation control for supertall structures. The impact of foundation differential settlement for elevation compensation and pre-adjustment length can be divided into direct and indirect effects. Meanwhile, in the engineering practice of elevation control for supertall structures, it is recommended to adopt the multi-level elevation control method with relative elevation control and design elevation control, without considering the overall settlement in the construction process.

Development of Design Charts to Estimate Member Forces on Basement Wall (지하벽체의 최대부재력 산정을 위한 차트의 개발)

  • Kim, Young-Chan;Kim, Ju-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2012
  • It is a common practice to design basement walls acting as a one-way slab or plate with idealized boundary conditions, resulting in potentially inefficient design. The walls are often supported by buttress columns and side walls in the vertical direction, thereby acting as a two-way slab. In this study, structural behavior of single-story, three-span basement wall subjected to lateral soil pressure was investigated. Three dimensional finite element analyses were conducted to determine the force distribution on the wall. Based on the numerical studies, a regression analysis was carried out to determine the design values of moments in vertical and horizontal directions as well as shear forces on the wall and design charts are developed. The proposed design method with accompanying design charts would enable practicing engineers to estimate member forces on the wall for preliminary design purpose without resorting to finite element analysis. Numerical examples demonstrated the applicability of the proposed method.

한국에서의 PBD공법의 현황 및 문제점과 발전방향

  • 김영남;권성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.65-94
    • /
    • 2001
  • The use of PBD(prefabricated band drain)far ground improvement is rapidly increased due to the merit of construction period and cost, environmental preservation compared with other vertical drain method, and the development of material. This paper presents the historical review, theoretical background, design procedure and method, and typical construction example for the PBD. Also, the direction of further technical development and study is recommended.

  • PDF

Aerodynamic method of H-Darrieus wind turbines (H-다리우스형 풍력터빈의 공력설계 방법의 구축)

  • Jeong, Suyun;Chang, Semyeong;Lee, Jangho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.179.2-179.2
    • /
    • 2010
  • In this study, we have constructed the method of design about H-Darrieus wind turbine, a kind of VAWT(vertical axis wind turbine). The NACA 0012 airfoil is chosen for the blade, and DMS(double multiple streamtube) theory is used for the analysis. The flow field is computed with numerical solution of rotating Navier-Stokes equations. From the result of experimental data of power coefficient curves, the validity of the present research is checked. Through the non-dimensional parameter analysis for the wind turbine design, we estimated the efficiency of wind turbine with the resultant Cp's, with which an efficient design of VAWT is achieved, and aerodynamic characteristics are presented systematically.

  • PDF

The analysis of Utilization of LiDAR data in road design (도로설계를 위한 LiDAR 데이터의 활용성 분석)

  • Lee, Hyun-Jik;Park, Eun-Gwan;Park, Won-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.363-366
    • /
    • 2007
  • Road Design is being reached to the working design to produce drawings, calculate construction quantity and cost, through the basic design that contained feasibility study and all impact assessment. In general, to plan the route we use topographic map. The vertical positional accuracy is 30cm and horizontal positional accuracy is 35cm in 1:1,000 scale topographic map. In LiDAR, vertical positional accuracy is 15cm and horizontal positional accuracy is 30cm. So if we use LiDAR on road design, more accurate earth-volumn will be calculated when we plan the route. In this paper we try to find the method to use the LiDAR data on road design by drawing the profile and cross sectional view and comparing the earth-volumn to the road that working design is in process adopting the topographic map and LiDAR data.

  • PDF