• Title/Summary/Keyword: Vertical Shaft

Search Result 165, Processing Time 0.02 seconds

An experimental study for the effect of soil plug on the basal heave stability for the vertical shaft excavation in clay (점성토 지반 수직구 굴착 중 히빙 안정성 증가에 대한 관내토 효과에 대한 실험적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun;Kim, Jung-Tae;Cha, Yohan;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.183-195
    • /
    • 2018
  • Recently, the need for research on vertical shaft excavation is increasing with the increase of the demands for the underground and utility tunnels. As a part of the R&D project of the Ministry of Land, Infrastructure and Transport, CUT (center for utility tunnel) has developed "Ring cut method". "Ring cut method" is a method to improve the stability of the ground against the basal heave by excavator wall pre-penetration during vertical shaft excavation. In this study, the basal heave was simulated by centrifugal model test. The basal heave, ground subsidence, and ground deformation of surrounding ground were analyzed by soil plug effect from wall pre-penetration. It was found that the soil plug could control the basal heaving and ground subsidence, and verified that the 'Ring cut method' could be a good countermeasure for the ground stability against the basal heave.

Numerical study on basal heave stability of a circular vertical shaft constructed in clay (연약 점성토 지반에 시공되는 원형 수직구의 히빙 안정성에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.231-245
    • /
    • 2022
  • When vertical shafts are constructed in soft clay with low strength, there is a risk of basal heave, which causes the excavation surface to heave due to the low bearing capacity of the ground against the imbalance of earth pressure at the excavation surface. Methods of deriving a safety factor have been proposed to evaluate the stability against the basal heave. However, there are limitations in that it is difficult to accurately evaluate the heave stability because many assumptions are included in the theoretical derivation. In this study, assuming that a circular vertical shaft is constructed in soft clay, the existing safety factor equation proposed through a theoretical approach was supplemented. Bearing capacity according to the shaft geometry, inhomogeneity of the soil, and the effect of soil plug were considered theoretically and applied in a previous safety factor equation. A three-dimensional numerical analysis was conducted to simulate the occurrence of basal heave and review the supplemented equation through various case studies. Several series of case studies were conducted targeting various factors affecting heave stability. It was verified that the additionally considered characteristics were properly reflected in the supplemented equation. Furthermore, the effects of each factor constituting the safety factor equation were examined using the results of the numerical analysis performed by simulating various cases. It was confirmed that considering the undrained shear strength increment according to depth had the most significant effect on the calculation of the safety factor.

Modeling of Smoke Dispersion through a Long Vertical Duct (장대 수직 환기구를 통한 매연 확산의 모델링 연구)

  • Yoon, Sung-Wook
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.287-293
    • /
    • 2003
  • A long vertical duct is an essential installation for extracting smoke to the ground level when a fire occurs in an underground space. Due to the limitations of its basic assumptions, the existing two-layer zone model is unsuitable to model smoke dispersion through a long vertical duct. Therefore, an assessment was made to investigate the applicability of the field model, which is based on the computational fluid dynamics (CFD). A similar configuration to the published experimental work was modeled to test the validity. It is clear that under a consistent decision criterion based on the mass fraction, the field model (CFD) is able to predict that the diffusion front progresses up the shaft with exactly the same rate as that in the empirical correlation equation. This result is for better than the mathematically obtained equations in previously published research. Therefore, it can be said that the field model is an excellent option to predict the smoke dispersion through the long vertical shaft.

Performance Tests of an Induction Motor with Hexahedron HTS Bulk Bearing (고온초전도 벌크 베어링을 사용한 유도 전동기의 특성 시험)

  • 임형우;이광윤;박명진;차귀수;이지광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.286-290
    • /
    • 2003
  • The high temperature superconducting bulk can be used as the bearing of induction motors. This paper presents the fabrication and test results of an induction motor with superconducting bearings using HTS bulks. The bearing had eight hexahedron type YBCO bulks. Height, width and thickness of the HTS bulk were 30mm, 30mm and 10mm, respectively. Single phase induction motor was used to drive the shaft made of aluminum and the rotor of a conventional induction motor. To estimate the performance of the HTS bulk magnetic bearing, no load test, load test and Impact test were carried out. Load tests were performed by using air resistance caused by the shaft-mounted thin cylinder with buckets. Impact tests by axial direction and vertical direction impact showed that the vibration of the shaft gradually decayed. The induction motor with HTS bulk magnetic bearing rotated silently and smoothly throughout the tests. According to the test results, conventional bearings can be replaced with superconducting magnetic bearings made of HTS bulks.

Critical Speed Analysis of a Vertical Pump (펌프회전체의 임계속도해석)

  • 전오성;김정태;임병덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1992
  • A critical speed analysis of a pump shaft has been investigated. Among various methods in the shaft critical speed calculation, a transfer matrix method has been examined in this research. After a brief review on the transfer matrix method, a modeling procedure for a continuous structure has been discussed. Then, a critical speed of a multistage pump shaft has been estimated up to several low modes. Throughout an analysis, parametric effects on the bearing stiffness, a degree of the modeling order, and attachmant of the impeller have been investigated. As an application example, a critical speed analysis of a verical pump which has been implemented in domestic electric power plants for cooling water circulation has been conducted in order to provide a safe operation as far as a pump vibration is concerned.

  • PDF

A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD (CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구)

  • MO, Jang-Oh;NAM, Koo-Man;KIM, You-taek;LEE, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

Laterally Loaded Behavior of Short Drilled Shaft Foundation for Single-Pole Structures (단주 구조 송전탑 기초의 횡방향 거동에 관한 연구)

  • Choi, Ho-Young;Kim, Yeong-Hun;Lee, Seung-Rae;Kim, Dae-Hak;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1106-1116
    • /
    • 2008
  • Single-pole transmission structures which are supported by drilled shaft foundations are usually subjected to large overturning moments with modest vertical and lateral loads. To analyze the behavior of the drilled shaft under such loading conditions, an analytical model was developed based on beam-column and subgrade reaction methods. Field model tests were performed to calibrate the developed analytical model in which additional subgrade spring models were adopted. The field test results estimated from the calibrated analytical model were compared with those calculated by one spring model and other commercial program. According to the comparison study, the developed analytical model was proven to be a useful tool to analyze the laterally loaded behavior of foundations for single-pole structures.

  • PDF

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

A case study on the optimal shafting alignment concerning bearing stiffness for 10,100 TEU container carrier (베어링 강성을 고려한 10,100 TEU 컨테이너 운반선의 최적 추진축계 배치에 관한 사례 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Damages of the main engine aftmost bearing and the after stern tube bearing tend to increase due to misalignment. And as the shafting system becomes stiffer due to the large engine power, whereas the hull structure becomes more flexible due to optimization by using high tensile thin steel plates. And this is the reason that more sophisticated shaft alignments are required. In this study, the optimum shafting alignment calculation was carried out, considering the thermal expansion effect, exploiting the sensitivity index, which indicates the reasonable position of forward intermediate shaft bearing for shaft alignment. and as the main subject in this study, the elastic deformation on intermediate shaft and main engine bearings occurred by vertical load of shaft mass were examined thoroughly and analyzed allowable load of bearings, reaction influence numbers of all bearings. As the result, a reliable optimum shafting alignment was derived theoretically. To verify these results, they were referred to the engine maker's technical information of main engine installation and being used shafting alignment programs of both Korean Register of Shipping and Det Norske Veritas, their reliability were reviewed.

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.