DOI QR코드

DOI QR Code

Numerical study on basal heave stability of a circular vertical shaft constructed in clay

연약 점성토 지반에 시공되는 원형 수직구의 히빙 안정성에 대한 수치해석적 연구

  • Kang, Seok-Jun (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Cho, Gye-Chun (Dept. of Civil and Environmental Engineering, KAIST)
  • 강석준 (한국과학기술원 건설및환경공학과) ;
  • 조계춘 (한국과학기술원 건설및환경공학과)
  • Received : 2022.02.28
  • Accepted : 2022.04.14
  • Published : 2022.05.31

Abstract

When vertical shafts are constructed in soft clay with low strength, there is a risk of basal heave, which causes the excavation surface to heave due to the low bearing capacity of the ground against the imbalance of earth pressure at the excavation surface. Methods of deriving a safety factor have been proposed to evaluate the stability against the basal heave. However, there are limitations in that it is difficult to accurately evaluate the heave stability because many assumptions are included in the theoretical derivation. In this study, assuming that a circular vertical shaft is constructed in soft clay, the existing safety factor equation proposed through a theoretical approach was supplemented. Bearing capacity according to the shaft geometry, inhomogeneity of the soil, and the effect of soil plug were considered theoretically and applied in a previous safety factor equation. A three-dimensional numerical analysis was conducted to simulate the occurrence of basal heave and review the supplemented equation through various case studies. Several series of case studies were conducted targeting various factors affecting heave stability. It was verified that the additionally considered characteristics were properly reflected in the supplemented equation. Furthermore, the effects of each factor constituting the safety factor equation were examined using the results of the numerical analysis performed by simulating various cases. It was confirmed that considering the undrained shear strength increment according to depth had the most significant effect on the calculation of the safety factor.

지반강도가 낮은 연약 점성토 지반을 대상으로 수직구가 시공되는 경우, 굴착면에서의 토압 불균형에 대한 지반의 지지력이 낮아 굴착면이 융기하는 히빙이 발생할 위험이 존재한다. 히빙에 대한 안정성을 평가하기 위해 안전율을 계산하는 방법들이 제안되어왔으나, 이론적인 유도 과정에서 많은 가정사항들이 포함되어 정확한 히빙 안정성 평가가 어렵다는 한계를 가진다. 본 연구에서는 선행 연구를 보완하기 위해 원형 수직구가 연약 점성토 지반에 시공되는 경우를 상정하여 굴착 형상에 따른 지반 지지력의 변화, 지반 점성토의 비균질성, 그리고 관내토의 효과에 대한 이론적 접근을 통해 기존 안전율 제안식을 보완하였다. 보완된 식의 검증과 다양한 사례 연구를 통한 히빙 안정성 검토를 위해 원형 수직구 굴착 시 발생하는 굴착면의 히빙을 3차원 수치해석으로 모사하여 안전율을 도출하였다. 수치해석 및 히빙 안전율 제안식들을 이용하여 다양한 인자의 변화에 따른 히빙 안전율의 변화를 검토한 결과, 본 연구에서 추가적으로 보완된 특성이 3차원 안전율 식 내에 적절하게 반영되었음을 확인하였다. 다양한 사례를 모사하여 수행된 수치해석 결과를 이용하여 수식을 구성하는 인자들이 히빙 안전율에 미치는 영향을 도출하였으며, 깊이에 따른 비배수 전단강도 증가의 고려 여부가 안전율 값 산정에 지배적인 영향을 미치는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 수행된 미래 지하도시 연구사업의 지원을 받아 수행되었습니다. 이에 감사드립니다.

References

  1. Benmoussa, S., Benmebarek, S., Benmebarek, N. (2021), "Bearing capacity factor of circular footings on two-layered clay soils", Civil Engineering Journal, Vol. 7, No. 5, pp. 775-785. https://doi.org/10.28991/cej-2021-03091689
  2. Bjerrum, L., Eide, O. (1956), "Stability of strutted excavations in clay", Geotechnique, Vol. 6, No. 1, pp. 32-47. https://doi.org/10.1680/geot.1956.6.1.32
  3. Cai, F., Ugai, K., Hagiwara, T. (2002), "Base stability of circular excavations in soft clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 8, pp. 702-706. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:8(702)
  4. Goh, A.T.C., Kulhawy, F.H., Wong, K.S. (2008), "Reliability assessment of basal-heave stability for braced excavations in clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 2, pp. 145-153. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(145)
  5. Hashash, Y.M., Whittle, A.J. (1996), "Ground movement prediction for deep excavations in soft clay", Journal of Geotechnical Engineering, Vol. 122, No. 6, pp. 474-486. https://doi.org/10.1061/(asce)0733-9410(1996)122:6(474)
  6. Hsieh, P.G., Ou, C.Y., Liu, H.T. (2008), "Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay", Canadian Geotechnical Journal, Vol. 45, No. 6, pp. 788-799. https://doi.org/10.1139/T08-006
  7. Itasca Consulting Group (2009), FLAC 3D: Fast Lagrangian Analysis of Continua in 3 dimensions, user manual (version 5.0), Minneapolis.
  8. JSA (1988), Guidelines of design and construction of deep excavation, Japan Society of Architecture, Tokyo.
  9. Kang, S.J., Cho, G.C., Kim, J.T., Cha, Y., Hong, E.S. (2018a), "An experimental study for the effect of soil plug on the basal heave stability for the vertical shaft excavation in clay", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 1, pp. 183-195. https://doi.org/10.9711/KTAJ.2018.20.1.183
  10. Kang, S.J., Cho, G.C., Kim, J.T., Kim, H.S., Hong, E.S. (2018b), "A study for calculating factor of safety against basal heave during circular vertical shaft excavation in clay considering 3D shape", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 4, pp. 717-729. https://doi.org/10.9711/KTAJ.2018.20.4.717
  11. Salgado, R., Lyamin, A.V., Sloan, S.W., Yu, H.S. (2004), "Two-and three-dimensional bearing capacity of foundations in clay", Geotechnique, Vol. 54, No. 5, pp. 297-306. https://doi.org/10.1680/geot.2004.54.5.297
  12. Su, S.F., Liao, H.J., Lin, Y.H. (1998), "Base stability of deep excavation in anisotropic soft clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 9, pp. 809-819. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(809)
  13. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley & Sons, New York, pp. 118-143.
  14. Tobar, T., Meguid, M.A. (2010), "Comparative evaluation of methods to determine the earth pressure distribution on cylindrical shafts: a review", Tunnelling and Underground Space Technology, Vol. 25, No. 2, pp. 188-197. https://doi.org/10.1016/j.tust.2009.11.001
  15. Ukritchon, B., Whittle, A.J., Sloan, S.W. (2003), "Undrained stability of braced excavations in clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 8, pp. 738-755. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(738)
  16. Watabe, Y., Tsuchida, T., Adachi, K. (2002), "Undrained shear strength of Pleistocene clay in Osaka Bay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 3, pp. 216-226. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(216)
  17. Wu, S.H., Ou, C.Y., Ching, J. (2014), "Calibration of model uncertainties in base heave stability for wide excavations in clay", Soils and Foundations, Vol. 54, No. 6, pp. 1159-1174. https://doi.org/10.1016/j.sandf.2014.11.010