• Title/Summary/Keyword: Vertical Obstacle

Search Result 54, Processing Time 0.026 seconds

An Analysis of GPS Station Positioning Accuracy Variations According to Locations of Obstacles (장애물 위치에 따른 GPS 기준국 측위정확도 변화분석)

  • Sohn, Dong-Hyo;Park, Kwan-Dong;Jung, Wan-Suk;Kee, Changdon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.463-469
    • /
    • 2013
  • This paper focuses on GPS positioning accuracy variations according to locations of obstacles which surround GPS station. We derived precise coordinates of a GPS station which has a good visibility. Its observation data was rewritten by assuming signal blocking due to obstacle in the elevation angle of $10^{\circ}$ to $70^{\circ}$. We processed daily and hourly data for 10 days. In the results using daily data, RMSE was at 10mm level. And RMSE increased to 100mm levels in case of hourly data. As the elevation angle of obstacle increased, the horizontal and vertical RMSE increased, while the height estimates decreased. These results showed the higher the elevation angle of the obstacle increased the loss of large amounts of data by blocking satellite signals direction. In terms of the direction, when the blocking thing was located in the east or west, the coordinate has larger error in the east-west direction. And if signal was blocked at the south direction, the difference between the east-west error and the south-north position error was reduced.

Numerical Study on Characteristics of Gas Leakage in an Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내부의 가스 누출 특성에 대한 수치해석 연구)

  • Bang, Joo Won;Sung, Kun Hyuk;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.594-600
    • /
    • 2016
  • The present study numerically investigated the gas leakage characteristics in a simplified underground combined cycle power plant. The effect of obstacles near a crack location on the gas concentration in the confined space was analyzed by using the lower flammable limit (LFL) of methane gas. When the jet flow was close to the vertical walls, the longitudinal leakage distance increased by about 60% (when an obstacles was present) compared to the case without any obstacle, because these obstacles prevented transverse flows. In addition, when an air filter was installed near to the trajectory of the gas flow, the longitudinal leakage distance was similar to the distance between the crack and obstacle, whereas the transverse leakage distance increased up to 8 times compared to the case without any obstacle. As the jet flow impacts on the obstacle and changes its direction, the gas flows recirculate. Therefore, it is necessary to consider the effect of the structure and facility locations on the trajectory of the jet flow to propose an accident prevention system in confined spaces.

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R.;Soria, J.M.;Perez-Aracil, J.;Pereira, E.;Diez-Jimenez, E.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.

A study on recognition system of preceding vehicle by image processing

  • Shimeno, Yasumasa;Ishijima, Shintaro;Kojima, Aira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.141-144
    • /
    • 1996
  • This study deals with the problem of the recognition of the preceding vehicles by image processing. The purpose of this study is the development of the equipment to prevent a collision with preceding vehicles during driving the vehicle. In order to decrease the processing time and increase reliability, at first, the traffic lane is extracted. It is determined by detecting road edges and calculating their tangent. After the traffic lane is gotten, the position of the vehicle is searched inside the lane. The features used to detect the vehicles in the algorithm are shadow of the vehicle, vertical edges, horizontal edges, and symmetrical segment. The preceding vehicles are extracted successfully by this method.

  • PDF

Design and Performance Analysis of a Variable Configuration Tracked Vehicle (가변 형상 무한 궤도 차량의 성능 해석 및 설계)

  • 김한호;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • A variable configuration tracked vehicle(VCTV) is developed to reduce turning energy and improve climbing ability for stairs. This mechanism has four track T-type frames. By changing the driving direction, each track T-type frame rotates to minimize the contact area with ground. It also has better performance than other VCTV in energy consumption of turning. Futhermore this mechanism is more stable than other VCTV on the rough terrain. When climbing stairs, each track T-type frame rotates to obtain a front attack angle and keep stability on steep stairs. The design parameters of components of track T-type frames are optimized to enhance the performance of climbing stairs. Performance indices include a stable angle, a climbing ability, a height of the vertical obstacle. In case that the overall length of the mechanism is 0.2m, it is required that the radius of the wheels should be 5mm and the length track contacted with he ground should be 0.09m to climb higher and steeper stairs.

  • PDF

The correction of clean robot position error (청소 로봇의 위치오차 보정)

  • Yun, Dong-Woo;Oh, Sung-Nam;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.533-535
    • /
    • 2006
  • Cleaning robot that is selling in present city has various cleaning algorithm. However, error of most products happens on progress direction by small obstacle that do not properly and miss cleaning thereby happens. There is robot that correct own position, but is hard to use in general home because economical strain is very big because is high price product very. In this paper measures angular velocity of robot using deviation sensor, and do to correct error using turning angular velocity and vertical angular velocity. Because detailed cleaning such as high pice style is available without addition of expensive hardware in middle and low price style cleaning product thereby, can possess price competitive power.

  • PDF

An Immersed Boundary Method for Simulation of Density-Stratified Flows (밀도 성층 유동 해석을 위한 가상 경계법)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.940-947
    • /
    • 2005
  • An immersed boundary method for simulation of density-stratified flows has been developed and applied to computation of viscous flows past three different types of obstacle under table density stratification, namely laminar flows past a vertical barrier, a cosine hill, and a sphere, respectively. Density forcing is introduced on the body surface or inside the body. Significant changes in flow characteristics are observed depending on Fr. The numerical results are in good agreement with other authors' experimental and numerical results currently available, and shed light on computation of density-stratified flows in complex geometries.

Numerical Study for Effects of Density-Stratification on Wake Behind a Sphere (구 후류에 미치는 유동장 밀도 성층화 영향 전산 해석)

  • Lee, Sung-Su;Yang, Kyung-Soo;Park, Chan-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.553-559
    • /
    • 2004
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered, and linear stratification of density is assumed under Bossiness approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

A Numerical Study of Formation of Unsteady Vortex behind a Sphere in Stratified Flow (층상류 속에 있는 구 후류의 비정상 와류 형성에 관한 수치 해석)

  • Lee, Seung-Su;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.715-720
    • /
    • 2000
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered and linear stratification of density is assumed under Boussinesq approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

  • PDF

An Immersed-Boundary Method for Simulation of Density-Stratified Flows (밀도 성층 유동 해석을 위한 가상경계법)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Hwang, Jong-Yeon;Lee, Sung-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1909-1914
    • /
    • 2004
  • An immersed boundary method for simulation of density-stratified flows is developed and applied to computation of viscous flows over two-dimensional obstacles in a bounded domain under stable density stratification. Density sources/sinks are introduced on the body surface. Two obstacle shapes are used, a vertical barrier and a smooth cosine-shaped hill; weak stratification, defined by $K=ND/{\pi}U{\leq}1$, where U, N, and D are the upstream velocity, buoyancy frequency, and domain height, respectively, is considered. The results are consistent with other authors' calculations, and shed light on computation of density-stratified flows in complex geometries.

  • PDF