• Title/Summary/Keyword: Vertical Landing

Search Result 221, Processing Time 0.033 seconds

Analysis of the Vertical GRF Variables during Landing from Vertical Jump Blocking in Volleyball (배구 제자리 점프 블로킹 착지 시 숙련도에 따른 수직지면반력 변인 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • The purpose of this study was to investigate comparative analysis of the vertical ground reaction force variables during landing from vertical jump blocking in volleyball through GRF analysis system. The subjects participated in this study were 6 male university volleyball player and 6 male acted as a control group. The results are as follows: 1. The skilled group was longer than the unskilled group in flight time during vertical jump blocking. 2. The skilled group was faster than the unskilled group in tFz2 during landing from vertical jump blocking. 3. The skilled group was higher than the unskilled group in Fz2 during landing from vertical jump blocking. 4. The skilled group was higher than the unskilled group in Fz2LR during landing from vertical jump blocking. 5. The skilled group was higher than the unskilled group in impulse during landing from vertical jump blocking. Consequently, during landing from vertical jump, the landing strategy of the skilled group was found as a form of a stiff landing. Therefore, this landing strategy will be required to strengthen of hip and knee extensors and ankle plantar flexors for injury prevention.

Effects of Landing Tasks on the Anterior Cruciate Ligament Injury Risk Factors in Female Basketball Players (여자 농구 선수들의 착지 유형이 전방십자인대 손상위험 요인에 미치는 영향)

  • Lee, Gye-San;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • The purpose of this study was to investigate the effects of landing tasks on the anterior cruciate ligament (ACL) injury risk factors in female basketball players. Fifteen female basketball players performed a drop landing and a drop landing with a vertical jump on the 40 cm height box. Three-dimensional motion analysis system and ground reaction force system was used for calculate the ACL injury risk factors. Paired samples t-test with Bonfferoni correction were performed. The drop landing with a vertical jump had the higher knee flexion angle, peak knee varus moment, trunk flexion angle than a drop landing. However, the drop landing had the higher trunk rotation angle than a drop landing with a vertical jump. These results indicate that seemingly minor variations between drop landing and drop landing with a vertical jump may influence the ACL injury risk factors. Caution should be used when comparing studies using different landing tasks.

Vertical Stiffness and Lower Limb Kinematic Characteristics of Children with Down Syndrome during Drop Landing (드롭랜딩 동작 시 다운증후군 아동들의 수직 강성과 하지 운동학적 특성)

  • Koo, Dohoon;Maeng, Hyokju;Yang, Jonghyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.137-143
    • /
    • 2019
  • Objective: Ligament laxity and hypotonia are characteristics of Down syndrome patients. The aim of this study was to compare the landing pattern between Down syndrome patients and typically developing subjects. To compare the landing pattern, variables related to ligament laxity and hypotonia i.e. vertical stiffness and lower extremities kinematics were investigated. Method: Five subjects with Down syndrome (age: $14.6{\pm}1.8years$, mass: $47.6{\pm}6.94kg$, height: $147.9{\pm}6.0cm$) and six able-bodied subjects (age: $13.2{\pm}0.4years$, mass: $54.7{\pm}6.7kg$, height: $160.1{\pm}9.8cm$) participated in this study. Results: The vertical displacement of the center of mass, vertical reaction force, leg stiffness and range of ankle angle range among Down syndrome patients were significantly different than typically developing group. The youth with Down's syndrome appeared to receive greater vertical impact force at landing than normal youth. Conclusion: The differences in the biomechanical characteristics suggest the delay in motor development among Down syndrome patients and an increased risk of injury to the lower extremity during movement execution such as drop landing.

Comparative Analysis of Maximum Vertical Reaction Force and Lower Limbs on Drop Landing between Normal and Flat Foot Group

  • Yoo, Kyung-Tae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.222-228
    • /
    • 2011
  • With comparison of maximum vertical reaction force and lower limb on drop landing between normal and flat foot group, this study is to provide fundamental data of the prevention of injury and the treatment of exercise which are frequently occurred on flat foot group's drop landing. The surface electrodes were sticked on lateral gastrocnemius muscle, medial gastrocnemius muscle, tibialis anterior and the drop landing on a force plate of 40cm was performed with a normal group who had no musculoskeletal disease and a flat foot group of 9 people who had feet examinations. Vertical reaction force were significantly statistically different between two groups(p<.001). Muscle activity of lower limbs in all three parts were not statistically different but showed high tendency on average in the flat foot group. The flat foot group had difficulties in diversification of impact burden and high muscle activity. Therefore, it was suggested that muscular strengthening of knee joints and plantar flexions of foot joints which were highly affected in impact absorption will be required.

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

Optimal Guidance Law Using Exact Linearization (ICCAS 2005)

  • Ogawa, Takahiro;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1228-1233
    • /
    • 2005
  • In this paper, we present a new guidance law for a reusable launch vehicle (RLV) that lands vertically after reentry. In our past studies, a guidance law was developed for a vertical/soft landing to a target point. The guidance law, which is analytically obtained, can regenerate a trajectory against disturbances because it is expressed in the form of state feedback. However, the guidance law does not necessarily guarantee a vertical/soft landing when a dynamical system such as an RLV includes a nonlinear phenomenon owing to the atmosphere of the earth. In this study, we introduce a design of the guidance law for a nonlinear system to achieve a vertical/soft landing on the ground using the exact linearization method and solving the two-point boundary-value problem for the derived linear system. Numerical simulation confirmed the validity of the proposed guidance law for an RLV in an atmospheric environment.

  • PDF

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.

Effect of Functional Ankle Instability and Surgical Treatment on Dynamic Postural Stability and Leg Stiffness Variables during Vertical-Drop Landing

  • Jeon, Kyoung Kyu;Kim, Kew Wan;Ryew, Che Cheong;Hyun, Seung Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.135-141
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of functional ankle instability (FAI) and surgical treatment (ST) on postural stability and leg stiffness during vertical-drop landing. Method: A total of 21 men participated in this study (normal [NOR]: 7, FAI: 7, ST: 7). We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force and the change in stance-phase leg length. Leg length was calculated as the distance from the center of the pelvis to the center of pressure under the foot. Furthermore, the analyzed variables included the loading rate and the dynamic postural stability index (DPSI; medial-lateral [ML], anterior-posterior [AP], and vertical [V]) in the initial contact phase. Results: The dimensionless leg stiffness in the FAI group was higher than that of the NOR group and the ST group (p = .018). This result may be due to a smaller change in stance-phase leg length (p = .001). DPSI (ML, AP, and V) and loading rate did not show differences according to the types of ankle instability during drop landing (p > .05). Conclusion: This study suggested that the dimensionless leg stiffness was within the normal range in the ST group, whereas it was increased by the stiffness of the legs rather than the peak vertical force during vertical-drop landing in the FAI group. Identifying these potential differences may enable clinicians to assess ankle instability and design rehabilitation protocols specific for the impairment.

Injury Prevention Strategies of Landing Motion of Jumping Front Kick to Apply Free Style Poomsae of Taekwondo (태권도 자유 품새에 적용하기 위한 뛰어 앞차기 착지 동작의 상해 예방 전략)

  • Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the injury factors of Taekwondo jumping kick during landing phase according to the experience of injury and to suggest a stable landing movement applicable to free style Poomsae. Method: The participants were non-injury group (NG), n = 5, age: 20.5±0.9 years; height: 171.6±3.6 cm; body weight: 65.7±4.4 kg; career: 5.0±2.7 years. Injury group (IG), n = 9, age: 21.0±0.8 years; height: 170.9±4.6 cm; body weight: 67.1±7.0 kg; career: 8.6±5.0 years. The variables are impact force, loading rate, vertical stiffness, lower limb joint angle, stability, balance, and muscle activity in the landing phase. Results: NG was statistically larger than IG in the gluteus medius (p<.05). The impact force, loading rate and vertical stiffness decreased as the landing foot angle, the ROM of lower limb joint angle and COM displacement increased (p<.05). Conclusion: Based on the results, it means that the landing foot angle plays an important role in the impact reduction during landing phase. It is required the training to adjust the landing foot angle.

A Study on Take-off and Landing Experimental System for Development of Power Platforms for Electric Vertical Take-Off and Landing Air Mobility (전기 수직이착륙 항공모빌리티용 동력플랫폼 개발을 위한 이착륙 실험시스템 연구)

  • Jun-Seong, Weon;Kwang-Hyun Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.639-648
    • /
    • 2023
  • In modern society, UAM (Urban Air Mobility) transportation system is being developed as an alternative to urban traffic congestion and environmental problems, and electric vertical take-off and landing (eVTOL) is a combination of vertical take-off and landing function and electric power. It is attracting attention as an innovative next-generation transportation method as an eco-friendly alternative that reduces noise and air pollution by providing efficient mobility within the city. Since eVTOL development requires designing and implementing airframes suitable for various mission purposes, the power system needs to be developed as a platform concept before airframe development. In this study, we empirically proposed a test bench concept equipped with a stable power supply and an efficient control system, essential in developing a power platform with a combined function in the form of a fuselage and module type specialized for various mission purposes. The proposed drivetrain platform test bench consists of a system verifying the stable take-off and landing software and a power platform adjusting the motor's thrust. It will serve as a verification system that can be developed.