• Title/Summary/Keyword: Vertical Elevation

Search Result 241, Processing Time 0.026 seconds

Morphological Analysis of the Sinus Lateral Wall Using Cone-Beam Computed Tomography (콘빔형 전산화단층영상을 이용한 상악동 측벽의 형태학적 분석)

  • An, Seo-Young;Kim, Yong-Gun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.349-357
    • /
    • 2012
  • The purpose of this study was to measure the thickness of the sinus lateral wall using cone-beam computed tomography (CBCT), and to find the most suitable vertical position for lateral window opening prior to sinus elevation. Fifty three patients requiring sinus elevation had CBCT scans acquired by CB MercuRay (Hitachi, Medico, Tokyo, Japan) from July, 2010 to June, 2012. The thickness of the sinus lateral wall was measured according to its vertical position against the sinus inferior border (SIB), and its mean was calculated through two repeated measurements. The thickness of the sinus lateral wall was more than 2 mm at 2 mm above the sinus inferior border (SIB+2), however, it was less than 2 mm at 3 mm above the sinus inferior border (SIB+3). In conclusion, it is recommended that the inferior border of lateral wall window be made 3 mm above the sinus inferior border during sinus elevation using the lateral approach considering the thickness of the sinus lateral wall.

Evaluation of Digital Elevation Models by Interpreting Correlations (상관관계 해석을 통한 수치표고모델 평가 방법)

  • Lee, Seung-Woo;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The ground positions and elevations information called DEMs(Digital Elevation Models) which are extracted from the stereo aerial photographs and/or satellite images using image matching method have the natural errors caused by variant environments. This study suggests the method to evaluate DEMs using correlation values between the reference and the target DEMs. This would be strongly helpful for experts to correct these errors. To evaluate the whole area of DEMs in the horizontal and vertical errors, the target cell is matched for each reference cell using the correlation values of these two cells. When the target cell is matched for each reference cell, horizontal and vertical error was calculated so as to help experts to recognize a certain area of DEMs which should be corrected and edited. If the correlation value is low and tile difference in height is high, the target cell will be candidated as changed or corrupted cell. When the area is clustered with those candidated cells, that area will be regarded as changed or corrupted area to be corrected and edited. Using this method, the evaluation for all DEM cells is practicable, the horizontal errors as well as vertical errors is calculable and the changed or corrupted area can be detected more efficiently.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.

Effect of new tunnel construction on structural performance of existing tunnel lining

  • Yoo, Chungsik;Cui, Shuaishuai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents the results of a three-dimensional numerical investigation into the effect of new tunnel construction on structural performance of existing tunnel lining. A three-dimensional finite difference model, capable of modelling the tunnel construction process, was adopted to perform a parametric study on the spatial variation of new tunnel location with respect to the existing tunnel with emphasis on the plan crossing angle of the new tunnel with respect to the existing tunnel and the vertical elevation of the new tunnel with respect to the existing one. The results of the analyses were arranged so that the effect of new tunnel construction on the lining member forces and stresses of the existing tunnel can be identified. The results indicate that when a new tunnel underpasses an existing tunnel, the new tunnel construction imposes greater impact on the existing tunnel lining when the two tunnels cross at an acute angle. Also shown are that the critical plan crossing angle of the new tunnel that would impose greater impact on the existing tunnel depends on the relative vertical location of the new tunnel with respect to the existing one, and that the overpassing new tunnel construction scenario is more critical than the underpassing scenario in view of the existing tunnel lining stability. Practical implications of the findings are discussed.

Study of evaluation wind resource detailed area with complex terrain using combined MM5/CALMET system (고해상도 바람지도 구축 시스템에 관한 연구)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Kim, Min-Jung;Lee, Soon-Hwan;Park, Soon-Young;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.274-277
    • /
    • 2008
  • To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.

  • PDF

A Comparative Analysis between Rigorous and Approximate Approaches for LiDAR System Calibration

  • Kersting, Ana Paula;Habib, Ayman
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.593-605
    • /
    • 2012
  • LiDAR systems provide dense and accurate topographic information. A pre-requisite to achieving the potential accuracy of LiDAR is having a proper system calibration, which aims at estimating all the systematic errors in the system measurements and the mounting parameters relating the different components. This paper presents a rigorous and two approximate methods for LiDAR system calibration. The rigorous approach makes use of the LiDAR equation and the system raw measurements. The approximate approaches utilize simplified LiDAR equations using some assumptions, which allow for less strict requirements regarding the raw measurements. The first presented approximate method, denoted as quasi-rigorous, assumes that we are dealing with a vertical platform (i.e., small pitch and roll angles). This method requires time-tagged point cloud and trajectory position data. The second approximate method, denoted as simplified, assumes that we are dealing with parallel strips, vertical platform, and minor terrain elevation variations compared to the flying height above ground. Such method can be performed using the LiDAR point cloud only. Experimental results using a real dataset, whose characteristics deviate to some extent from the utilized assumptions in the approximate methods, are presented to provide a comparative analysis of the outcome from the introduced methods.

Enhancement of Sound Image Localization on Vertical Plane for Three-Dimensional Acoustic Synthesis (3차원 음향 합성을 위한 수직면에서의 음상 정위 향상)

  • 김동현;정하영;김기만
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.541-546
    • /
    • 1999
  • The head-related transfer function (HRTF), which expresses the acoustic process from the sound source to the human ears in the free field, contains critical informations which the location of the source can be traced. It also makes it possible to realize multi-dimensional acoustic system that can approximately generate non-existing sound source. The use of non-individual, common HRTF brings performance degradation in localization ability such as front-back judgment error, elevation judgment error. In this paper, we have reduced the error on vertical plane by increasing the spectral notch level. The performance of the proposed method was Proved through subjective test that it is Possible to improve the ability to locate stationary/moving source.

  • PDF

An Analysis of Critical Heat Flux on the External Surface of the Reactor Vessel Lower Head

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.190-190
    • /
    • 1999
  • CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions.

  • PDF

The prosthetic approach and principle for an collapsed VDO : A clinical case of Class II div.2 patient (저위교합환자의 보철적 접근법과 이론 : Class II div.2 교합환자 증례)

  • Kwon, Kung-Rock
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.95-107
    • /
    • 2004
  • The prosthodontic treatment of Class II division 2 malocclusions is challenging. Ideally, these malocclusions should be identified at an early age and corrected with orthodontic treatment; otherwise, the individual develops a habitual position characterized by deep overbite and significant retruded position of mandibular condyle at the TMjoint fossa. This article describes a clinical protocol for the occlusal rehabilitation of patients with Class II div.2 malocclusions. Within this protocol, an occlusal splint was used to locate the most suitable maxillary-mandibular relationship for function and range of motion. The splint increased the vertical dimension and reduced pain on TMjoints. After transfer this relationship to an articulator for fabrication of provisional restorations, the CR position and centric prematurity contact between maxilla and mandible was used to determine the tentative vertical dimension of occlusion(VDO). The amount of elevation of VDO was decided on the articulated model. The provisional restorations were accurately transfered to a patient's mouth in clinical procedures using tattoo points. The final restoration was delivered after some trial periods with provisional restorations. The theory behind this protocol and its associated clinical procedures is presented along with a discussion.