• Title/Summary/Keyword: Vertical Crack

Search Result 230, Processing Time 0.026 seconds

A Study on Cutting Behavior of Plate Glass Using a Piezoelectric Ceramics Actuator (압전 세라믹을 이용한 평판유리의 절단 거동에 관한 연구)

  • Lee K.W.;Jea T.J.;Choi S.D.;Jeong S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.249-250
    • /
    • 2006
  • Recently FPD(Flat Panel Display) is used in various field to display enormous information. So cutting technique of flat panel display is needed for producing variety display merchandises. In present, cutting methods of flat panel glass includes breaking process. But this process occurs many glass particles. This glass particles are directly related badness of merchandise and falling productivity. In this paper, to cut front substrate glass of LCD and to get optimized cutting condition are tried fur eliminating breaking process with developed glass cutting machine using a Piezoelectric ceramics actuator. It is known that the vibration of Piezoelectric Ceramic have effect in crack proceeding through the analysis of fracture section.

  • PDF

Study on Propagated Crack and Stress Level of Boshinkak Bell(No.2 Trensure) ((보물(寶物) 제2호(濟2號)) 보신각종(普信閣鐘)의 전파(傳播)크랙 및 응력(應力)레벨에 관(關)한 연구(硏究))

  • Yum, Yung-Ha
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.1
    • /
    • pp.9-23
    • /
    • 1985
  • Boshin-Kak Bell, which is one of the largest bells, is located at Chong-Ro Square in the center of Seoul. The bell has been struct early morning and late evening for time-report since the 14th century in Lee Era. Therefore Boshin-Kak Bell has been an intimate old friend of Seoul citizen more than 500 years. Unfortunately, motal large cracks were found inside this bell in the horizontal and vertical directions in 1979. The present paper has investigated the propagated bell-crack by ultrasonic flaw detecting method, and the stress level, bell vibration and weight measurement by electric wire resistance strain gauge method. The results indicate that they are useful for further study of Korean bell by nondestructive test.

  • PDF

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

Development of Fracture Energy Measurement System of Asphalt Mixture Using Marshall Tester (마샬 안정도시험기를 이용한 아스팔트 혼합물의 파괴에너지 측정시스템 개발)

  • Kim, Boo-Il;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.135-144
    • /
    • 2009
  • The purpose of this study is to develop a simple and rational crack evaluation system using Marshall tester. Fracture energy were used as a parameter to evaluate the crack resistance of asphalt mixtures. Marshall tester basically measures the vertical deformation obtained from the linear variable differential transformer(LVDT) attached on the specimen's exterior, which can cause a measurement error due to the local deformation near the loading head. Therefore, the validity of the measurement system of Marshall tester should be tested to use it in calculation of fracture energy. Two types of indirect tensile strength tests were performed using four types of asphalt mixtures at two temperature conditions. From the tests, it was shown that local deformation near the loading head had not occurred before a specimen was fractured, so that it did not cause the measurement error of fracture energy. And also from the statistic analysis, the coefficient of variation of vertical deformation measurements obtained on specimen's exterior is less than 15%. Thus, vertical deformation measurements obtained on the specimen's exterior can be used in crack evaluation system using Marshall tester.

  • PDF

A Study on Shrinkage Crack of Steel Composite Concrete Box Structure (Transfer Girder) (강합성 콘크리트 박스구조물(트랜스퍼 거더)의 건조수축 균열에 대한 연구)

  • Choi, Jung-Youl;Kim, Dae-Ill
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 2022
  • This study was based on the steel composite concrete box structure (Transfer girder) which was installed to support the skyscrapers directly above the subway line. In this study, it was analytically proved that the cause of cracks on the steel composite concrete box structure were the shrinkage cracks by comparing the results of crack investigation and numerical analysis. As the results, it was found that the internal temperature difference between concrete and steel members occurred according to the shape of the steel frame embedded in concrete, the location of vertical stiffener, and the closed section area. The narrower spacing of vertical stiffener was occurred the internal temperature concentration of the structure and the temperature difference increased. And the location of higher thermal strain and temperature were similar to the location of actual cracks by the visual inspection. Therefore, the internal temperature concentration parts were formed according to the presence and spacing of the vertical stiffeners and the inspection passage in the central part of the structure. The shrinkage cracks were occurred by the restrained of temperature expansion and contraction of the concrete. As the results of this study, it was important to separate and manage the non-structural cracks caused by shrinkage and the structural cracks in the maintenance of serviced steel-composite concrete structures.

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 대한 실험적 연구)

  • 송우석;이진섭;양창현;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.273-278
    • /
    • 1994
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as shear span ratio, and the horizontal and vertical web reinforcements. A total of 27 specimens has been tested at the laboratory. In the tests all specimens have failed in shear causing inclined cracks from the load application points to the supports. The load bearing capacities have changed significantly depending on the shear span ratio. The effects of the vertical and horizontal reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed.

  • PDF

A Study on The Compensation Method of Vertical Members of Tall Building (초고층 벽식 건축물의 수직부재 축소량 계측 및 보정)

  • Kim, Woo-Jae;Song, Hwa-Cheol;Park, Hyo-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.404-407
    • /
    • 2004
  • The construction of high-rise buildings is increased. The Vertical Member of tall buildings is inherently shortened and it causes several seriously problems such as tilting of slab, crack within partition wall, deformation of curtain wall. This also affects structural stability by inducing unexpected stress to the structural members such as outrigger. In this study, the column shortening according to revised field information and to compare the analysis results the actual field measurement. Pusan The $\#$, a 51-story apartment building which is currently under construction was chosen for the case study.

  • PDF

Failure Behavior of Piercing Plug during Seamless Tube Manufacturing Process (심리스 튜브 제조공정 시 피어싱 플러그의 파손거동)

  • Lim, Young-Bin;Yoon, Jeong-Mo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.207-214
    • /
    • 2017
  • In this study, failure behavior of piercing plug for seamless tube manufacturing process was studied. Three different kinds of passed piercing plugs (10, 90, 215 times) were prepared. The shape deformation of the passed piercing plugs was observed by 3D coordinate measuring machine, and the oxidized layer on the surface of piercing plug was observed by optical microscopy. The length reduction of piercing plug presented at 215 times passed plug. It was found that the oxidized layer consisted of outer scale, inner scale and internal oxidation layers, and the inner scale layer had vertical cracks, and interfaces had horizontal cracks. We proposed the failure mechanism of piercing plug during seamless tube manufacturing process based on the formation of vertical and horizontal crack.

Nonlinear shear strength of pre-stressed concrete beams

  • Rahai, Alireza;Shokoohfar, A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.441-458
    • /
    • 2012
  • The shear strength is an important factor in the design of prestressed concrete beams. Therefore, researchers have utilized various methods to determine the shear strength of these elements for the design purposes. To evaluate some of the proposed theoretical methods, numerous models of post-tensioned beams with or without vertical prestressing are selected and analyzed using the finite element method and assuming nonlinear behavior for the materials. In this regard the validity of modeling is evaluated based on some tests results. In the second part of the study two beam specimens are built and tested and their load-deformation curve and cracking pattern are studied. The analytical results consist of compressive strut slope and mid span load deflection are compared with some experimental results, and the results of some codes' formulas. Finally comparing the results of nonlinear analysis with the experimental values, a new formula is proposed for determining strut slopes in prestressed concrete beams.

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF