• Title/Summary/Keyword: Vertex method

Search Result 307, Processing Time 0.026 seconds

Fuzzy clustering involving convex polytope (Convex polytope을 이용한 퍼지 클러스터링)

  • 김재현;서일홍;이정훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.51-60
    • /
    • 1997
  • Prototype based methods are commonly used in cluster analysis and the results may be highly dependent on the prototype used. In this paper, we propose a fuzzy clustering method that involves adaptively expanding convex polytopes. Thus, the dependency on the use of prototypes can be eliminated. The proposed method makes it possible to effectively represent an arbitrarily distributed data set without a priori knowledge of the number of clusters in the data set. Specifically, nonlinear membership functions are utilized to determine whether a new cluster is created or which vertex of the cluster should be expanded. For this, the membership function of a new vertex is assigned according to not only a distance measure between an incoming pattern vector and a current vertex, but also the amount how much the current vertex has been modified. Therefore, cluster expansion can be only allowed for one cluster per incoming pattern. Several experimental results are given to show the validity of our mehtod.

  • PDF

3-dimensional Mesh Model Coding Using Predictive Residual Vector Quantization (예측 잉여신호 벡터 양자화를 이용한 3차원 메시 모델 부호화)

  • 최진수;이명호;안치득
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.136-145
    • /
    • 1997
  • As a 3D mesh model consists of a lot of vertices and polygons and each vertex position is represented by three 32 bit floating-point numbers in a 3D coordinate, the amount of data needed for representing the model is very excessive. Thus, in order to store and/or transmit the 3D model efficiently, a 3D model compression is necessarily required. In this paper, a 3D model compression method using PRVQ (predictive residual vector quantization) is proposed. Its underlying idea is based on the characteristics such as high correlation between the neighboring vertex positions and the vectorial property inherent to a vertex position. Experimental results show that the proposed method obtains higher compression ratio than that of the existing methods and has the advantage of being capable of transmitting the vertex position data progressively.

  • PDF

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis (유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

Reduction of Patient Dose in Radiation Therapy for the Brain Tumors by Using 2-Dimensional Vertex or Oblique Vertex Beam Technique

  • Kim, Il-Han;Chie, Eui-Kyu;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.225-231
    • /
    • 2003
  • Up-front irradiation technique as 3-dimensional conformation, or intensity modulation has kept large proportion of brain tumors from being complicated with acute radiation reactions in the normal tissue during or shortly after radiotherapy. For years, we've cannot help but counting on 2-D vertex beam technique to reduce acute reactions in the brain tumor patients because we're not equipped with 3-dimensional planning system. We analyzed its advantages and limitations in the clinical application. From 1998 to 2001, vertex or oblique vertex beams were applied to 35 patients with primary brain tumor and 25 among them were eligible for this analysis. Vertex(V) plans were optimized on the reconstructed coronal planes. As the control, we took the bilateral opposed techniques(BL) otherwise being applied. We compared the volumes included in 105% to 50% isodose lines of each plan. We also measured the radiation dose at various extracranial sites with TLD. With vertex techniques, we reduced the irradiated volumes of contralateral hemisphere and prevented middle ear effusion at contralateral side. But the low dose volume increased outside 100%; the ratio of V to BL in irradiated volume included in 100%, 80%, 50% was 0.55+/-0.10, 0.61+/-0.10, and 1.22+/-0.21, respectively. The hot area within 100% isodose line almost disappeared with vertex plan; the ratio of V to BL in irradiated volume included in 103%, 105%, 108% was 0.14+/-0.14, 0.05./-0.17, 0.00, respectively. The dose distribution within 100% isodose line became more homogeneous; the ratio of volume included in 103% and 105% to 100% was 0.62+/-0.14 and 0.26+/-0.16 in BL whereas was 0.16+/-0.16 and 0.02+/-0.04 in V. With the vertex techniques, extracranial dose increased up to $1{\sim}3%$ of maximum dose in the head and neck region except submandibular area where dose ranged 1 to 21%. From this data, vertex beam technique was quite effective in reduction of unnecessary irradiation to the contralateral hemispheres, integral dose, obtaining dose homogeneity in the clinical target. But it was associated with volume increment of low dose area in the brain and irradiation toward the head and neck region otherwise being not irradiated at all. Thus, this 2-D vertex technique can be a useful quasi-conformal method before getting 3-D apparatus.

A Study on Development of an Algorithm for Vertex Creation to Define Ship Hull Forms (선체형상 정의를 위한 버텍스 산출 알고리즘 개발에 관한 연구)

  • Hyun-Kyoung Shin;Sang-Sung Shin;Kyu-Won Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.31-37
    • /
    • 1994
  • When a lot of input data are not distributed uniformly n a chord-span direction or when the given shape is complicated, it is very difficult to obtain an inverse matrix which represents the smooth Bi-cubic B-spline surface of the initial shape. To overcome this problem, we suggest image Surface Expansion Method(ISE Method) which is suggested for vertex creation of B-spline curves and surfaces. Its basic concept, convergency and verification are shown. Also B-spline curves and Surfaces represented by ISE Method were compared with those represented by the existing method which is based on the inverse matrix method, the pseudoinverse matrix method and the chord length approximation method for vertex yielding. Ship Hull Forms which have Knuckle, Bulbous Bow, Transom and Stern frame were represented by the ISE Method.

  • PDF

An Efficient Algorithm for Partial Scan Designs (효율적인 Partial Scan 설계 알고리듬)

  • Kim, Yun-Hong;Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.210-215
    • /
    • 2004
  • This paper proposes an implicit method for computing the minimum cost feedback vertex set for a graph. For an arbitrary graph, a Boolean function is derived, whose satisfying assignments directly correspond to feedback vertex sets of the graph. Importantly, cycles in the graph are never explicitly enumerated, but rather, are captured implicitly in this Boolean function. This function is then used to determine the minimum cost feedback vertex set. Even though computing the minimum cost satisfying assignment for a Boolean function remains an NP-hard problem, it is possible to exploit the advances made in the area of Boolean function representation in logic synthesis to tackle this problem efficiently in practice for even reasonably large sized graphs. The algorithm has obvious application in flip-flop selection for partial scan. The algorithm proposed in this paper is the first to obtain the MFVS solutions for many benchmark circuits.

Computing Fast Secondary Skin Deformation of a 3D Character using GPU (GPU를 이용한 3차원 캐릭터의 빠른 2차 피부 변형 계산)

  • Kim, Jong-Hyuk;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.55-62
    • /
    • 2012
  • This paper presents a new method to represent the secondary deformation effect using simple mass-spring simulation on the vertex shader of the GPU. For each skin vertex of a 3D character, a zero-length spring is connected to a virtual vertex that is to be rendered. When a skin vertex changes its position and velocity according to the character motion, the position of the corresponding virtual vertex is computed by mass-spring simulation in parallel on the GPU. The proposed method represents the secondary deformation effect very fast that shows the material property of a character skin during the animation. Applying the proposed technique dynamically can represent squash-and-stretch and follow-through effects which have been frequently shown in the traditional 2D animation, within a very small amount of additional computation. The proposed method is applicable to represent elastic skin deformation of a virtual character in an interactive animation environment such as games.

CURVATURE-WEIGHTED SURFACE SIMPLIFICATION ALGORITHM USING VERTEX-BASED GEOMETRIC FEATURES

  • CHOI, HAN-SOO;GWON, DALHYEON;HAN, HEEJAE;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.23-37
    • /
    • 2020
  • The quadratic error metric (QEM) algorithm has been frequently used for simplification of triangular surface models that utilize the vertex-pair algorithm. Simplified models obtained using such algorithms present the advantage of smaller storage capacity requirement compared to the original models. However, a number of cases exist where significant features are lost geometrically, and these features can generally be preserved by utilizing the advantages of the curvature-weighted algorithm. Based on the vertex-based geometric features, a method capable of preserving the geometric features better than the previous algorithms is proposed in this work. To validate the effectiveness of the proposed method, a simplification experiment is conducted using several models. The results of the experiment indicate that the geometrically important features are preserved well when a local feature is present and that the error is similar to those of the previous algorithms when no local features are present.

Vertex Normal Computation using Conformal Mapping and Mean Value Coordinates (등각사상과 평균값좌표계를 이용한 정점 법선벡터 계산법)

  • Kim, Hyoung-Seok B.;Kim, Ho-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.451-457
    • /
    • 2009
  • Most of objects in computer graphics may be represented by a form of mesh. The exact computation of vertex normal vectors is essential for user to apply a variety of geometric operations to the mesh and get more realistic rendering results. Most of the previous algorithms used a weight which resembles a local geometric property of a vertex of a mesh such as the interior angle, the area, and so on. In this paper, we propose an efficient algorithm for computing the normal vector of a vertex in meshes. Our method uses the conformal mapping which resembles synthetically the local geometric properties, and the mean value coordinates which may smoothly represent a relationship with the adjacent vertices. It may be confirmed by experiment that the normal vector of our algorithm is more exact than that of the previous methods.