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ABSTRACT. The quadratic error metric (QEM) algorithm has been frequently used for simpli-
fication of triangular surface models that utilize the vertex-pair algorithm. Simplified models
obtained using such algorithms present the advantage of smaller storage capacity requirement
compared to the original models. However, a number of cases exist where significant features
are lost geometrically, and these features can generally be preserved by utilizing the advantages
of the curvature-weighted algorithm. Based on the vertex-based geometric features, a method
capable of preserving the geometric features better than the previous algorithms is proposed in
this work. To validate the effectiveness of the proposed method, a simplification experiment is
conducted using several models. The results of the experiment indicate that the geometrically
important features are preserved well when a local feature is present and that the error is similar
to those of the previous algorithms when no local features are present.

1. INTRODUCTION

In recent years, computer graphics technology based on tridimensional surfaces using trian-
gular meshes have been increasingly employed in a number of fields [1]. In particular, with
the advancements in modern data collection methods, generation of high resolution surfaces is
possible [2], and the surfaces can be utilized in day-to-day activities by 3D printing them [3].
However, using a tridimensional surface requires large computer storage capacity. Consistently
using these data in simulation programs utilizing tridimensional surfaces is time-consuming.
Thus, the necessity of simplification has been an important study topic [4, 5, 6, 7, 8, 9]. Based
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on the results of simplification, a method of calculating the degree of error from using the sim-
plified surfaces compared with the original surfaces is presented in [10].

Examples of some commonly used simplification algorithms are edge contraction, triangle
contraction, vertex decimation, and vertex-pair contraction [4, 11, 12, 13]. All of these algo-
rithms aim to reduce the number of vertices and faces comprising the surface. Furthermore,
these algorithms also aim to preserving the important features on a surface.

In 1997, Garland et al proposed a simplification algorithm using the vertex-pair contraction
algorithm [4]. Adequate simplification was achieved, but the important features of the surface
were found to have disappeared. To address this problem, in 2006, B.-S. Jong et al proposed
a method to preserve the local features using the torsion detection algorithm [5]. In 2002,
S.-J. Kim et al [6] proposed a simplification algorithm using the discrete curvature norm, and
in 2010, L. Li et al applied the curvature norm in quadratic error metrics (QEM) using the
curvature-weighted method [7]. Further, in 2015, L. Yao et al proposed a discrete curvature
weighted QEM method [9]. It is important that, when surface simplification is conducted, the
local features are preserved well. However, the curvature-weighted algorithm of L. Li et al
quickly contracts the vertex-pair, which has a smaller absolute sum of two principal curvatures
regardless of the geometric features in a vertex. Thus, this algorithm has still the disadvantage
of easily losing the local features on a surface.

Therefore, this study suggests conducting the simplification after checking the geometric
features on the corresponding vertex. This study categorizes the geometric features of a given
vertex on a surface into three: corner, ridge, and smooth [14]. In addition, simplification is
conducted in the smooth area rapidly by varying the cost pair according to the category. On
the contrary, the simplifications of the ridge and corner areas were carried out more slowly. By
using this method, more specific features were preserved well while simplification was being
conducted.

This paper is organized as follows: Section 2 briefly explains the existing QEM algorithm
and curvature-weighted method using the vertex-pair contraction. Section 3 proposes the sim-
plification method using the vertex-based geometric feature. Section 4 evaluates the suggested
method through an experiment and confirms the error with an original surface using the evau-
lation proposed by Cignoni et al [10]. Finally, Section 5 draws the conclusion.

2. CURVATURE-WEIGHTED SURFACE SIMPLIFICATION

Quadratic Error Metrics: The algorithm was suggested by Garland et al in 1997 [4]. As shown
in Fig. 1, on a given surface, this algorithm uses the vertex-pair contraction. A simplification
of the algorithm is as follows:

Let us assume that the planes of the adjacent triangles from the vertex v are planes(v). In
the one plane’s equation of triangular mesh ax+ by + cz + d = 0 within planes(v), the corre-
sponding vertex v is defined as v = [x, y, z, 1]T and p = [a, b, c, d]T . Here, a2 + b2 + c2 = 1.
Using the coefficients of the plane equation, the following matrix Kp is defined:
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FIGURE 1. Vertex-pair contraction

Kp = ppT =


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2


Based on the defined Kp, Q(v) is defined as Q(v) =

∑
p∈planes(v)Kp; that is, by adding

Kp of all the triangles adjacent to the vertex v, the quadratic error metric of the vertex v is
calculated.

In order to conduct vertex-pair contraction, adequate v̄ which is newly contracted from two
vertices should be calculated. v̄ is set as follows, from the sum of Q1, Q2 that are extracted
from v1, v2. If the matrix for the calculation of v̄ does not have an inverse, v̄ = (v1 + v2)/2
can be used.


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

 v̄ =


0
0
0
1

 , [ qi,j ] = Q1 +Q2

Finally, after calculating ∆(v̄) = v̄T (Q1 + Q2)v̄, ∆(v̄) can be chosen and contracted,
which has the smallest value out of the entire vertex-pairs. This process can be repeated for
any required number of times.

A brief summary of the QEM algorithm has been given below.

(1) Calculate Q matrix at all vertices on the given surface.
(2) Identify the valid pair (v1, v2) from the respective vertex; that is, consider the cases

when (v1, v2) is edge or ‖v1 − v2‖ < t. t is the threshold parameter.
(3) Calculate v̄ from the respective vertex-pair (v1, v2) and find cost ∆(v̄).
(4) Conduct contraction by selecting the pair ∆(v̄) which has the smallest value at the

corresponding heap of cost ∆(v̄).
(5) Repeat steps 2, 3, and 4 for the required number of iterations.
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FIGURE 2. Model - cow : Local features disappear so easily. The number of
face is 5804, 500, 300 respectively.

The results indicated that the simplification of the QEM algorithm, in general, was achieved
adequately. However, when this algorithm was used, a number of local features were found
to have disappeared because of the repetitive contraction. From Fig. 2, it can be seen that the
region of horn of the surface of the model has disappeared.

In order to address this issue, S.-J. Kim et al proposed a simplification algorithm using the
discrete curvature norm (2002)[6]; Long Li et al applied this method to the QEM algorithm
(2010)[7].

Triangular meshes are composed of vertices, edges, and faces. First, the vertices are con-
nected by edges, and the faces are organized as F = {fk = (vk1 , vk2 , vk3)}k. As shown in
Fig. 3, let us assume that the adjacent vertices of any vertex v are v1, v2, ..., vn. An edge
is defined as ei = vi − v, and the angle of arc formed by the edge is defined as φi =
∠(ei, ei+1). Further, the three vertices are composed of two edges ei and ei+1, which are
set as the surface fi = (v, vi, vi+1). Thus, the normal vector of the corresponding face is
ni = (ei × ei+1)/ ‖ei × ei+1‖. The dihedral angle formed by the normal vector of two adja-
cent triangles is defined as βi = ∠(ni−1, ni).

FIGURE 3. Local configuration related to vertex v
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Under such conditions, the discrete Gaussian curvature K at v is defined as follows [6]:

K =

(
2π −

n∑
i=1

φi

)
/

(
A

3

)
A is the sum of the area of the adjacent triangles with vertex v. The discrete mean curvature

H at v is defined as follows:

H =

(
1

4

n∑
i=1

‖ei‖βi

)
/

(
A

3

)

Therefore, the principal curvatures on a corresponding vertex v are obtained as follows: If
H2 −K < 0, H2 −K = 0.

κ1 = H +
√
H2 −K,κ2 = H −

√
H2 −K

The method in [7] preserved the edge having the large sum of absolute curvature by multi-
plying the value resulting from the calculation of the cost pair based on the following definition
of the absolute curvature of the corresponding vertex v:

κabs = |κ1|+ |κ2|

Figure 4 shows the results based on the QEM and curvature-weighted methods. It can be
seen from Fig. 4 that the region of horn of the cow rapidly disappears when the QEM [4] algo-
rithm is used, whereas this region is preserved well when the curvature-weighted [7] algorithm
is used.

Therefore, it is clear that the curvature-weighted algorithm preserves the local features better
than the QEM algorithm. However, when this algorithm is used, the geometric features com-
prising a small number of triangle meshes disappear easily. The following part of this section
explains the simplification method which utilizes the vertex-based geometric features.

3. VERTEX-BASED GEOMETRIC FEATURES

In the previous method, when the sum of absolute curvature in the crease area was smaller
than the sum of the flat area on a curved surface, it contracted rapidly. In other words, despite
being a geometrically significant feature, the corresponding feature disappears easily when the
sum of absolute curvature is small. In Fig. 5, the two vertices marked by red circles on the
left surface are smooth areas and the two vertices on the right surface are crease areas. κabs
values of the two vertices are larger than 0 on the vertices on the left. On the contrary, κabs
value of one vertex in the smooth area is almost 0 and between κ1 and κ2 of the other vertex
is larger than 0, in the case of the vertices on the right. Thus, a case where the sum of the
absolute curvature on the vertices on the right is smaller than that on the left occurs. In this
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FIGURE 4. Comparison between QEM and curvature-weighted method re-
spectively. The number of faces is 300 equally.

FIGURE 5. Example - Crease areas can be contracted faster than smooth area

case, although the features of the vertices on the right are more important than those of the left,
it contracts faster. This is a disadvantage of the existing simplification algorithm [7].

Thus, it is difficult to determine the local geometric structure from the corresponding ver-
tex with the little information available on Gaussian curvature, mean curvature, and principal
curvature on the surface comprising the triangle mesh. It is necessary to determine a certain
structure near a vertex using the information on the adjacent triangle.

In Fig. 6, the vertex is marked in blue to determine the geometric structure. Let us assume
that the angles of respective triangles that form an angle with the vertex are θi. Further, be-
cause the corresponding triangle can be an obtuse triangle, the weight of angle is set as ωi =
min(θi, π − θi).

In Fig. 6, the blue vertex is p and the equation of the plane over this vertex which contains
the i-th triangle is γi. If the offset of this plane’s equation is δ, δ=−pTn. Now, n is the unit
normal vector of the plane equation. The signed distance from the plane equation γ to optional
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θi

θi+1

FIGURE 6. Demonstration of i-th vertex and adjacent triangle’s angle information

x ∈ R3 is defined as follows:

d(x, γ)=(x− pT )n=xTn+ δ

The calculation of the weighted sum of the squared distance from x with regard to the γi set
of the plane equations adjacent to the vertex p is as follows:

Q(x) =
∑
i

ωid
2(x, γi) = xTAx+ 2bTx+ c

Here, A =
∑

i ωinin
T
i , b =

∑
i ωiδini, c =

∑
i ωiδ

2
i . Thus, because A is a symmetric

positive definite matrix, it has three eigenvalues based on the spectral theorem. Let us assume
that the eigenvalue of A is λi (λ1 ≥ λ2 ≥ λ3). If ei is the corresponding eigenvector of λi, the
expression of spectrum theory is as follows:

FIGURE 7. Geometrical structure of smooth, ridge and corner, respectively
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FIGURE 8. Result of geometric feature(Fandisk) - corner(red), ridge(blue)
and smooth(none)

A =
3∑

i=1

λieie
T
i = (λ1 − λ2)E1 + (λ2 − λ3)Ee + λ3E1

whereEd =
∑3

i=1 êiêi
T . Additional necessary variables –α, β, gi – are defined asα=tan2(ψ/2),

β=cotψ, and gi =
∣∣bT êi∣∣/min(ελ1, λi). The parameter ψ is set as ψ = 20◦ and ε(10−7) avoids

potential division by zeros. As shown in Fig. 7, [14] identified the geometric structures –
corner, ridge, and smooth – of the corresponding vertex by applying the standards mentioned
below, using the above-mentioned eigenvalue and values of α and β.

1. If argmaxi{gi} = 3 or λ3 ≥ βmax{λ1− λ2, λ2− λ3}, the corresponding vertex v is corner.
2. If argmaxi{gi} = 2 or λ2 ≥ αλ1, the corresponding vertex v is ridge.
3. If the corresponding vertex v does not fall under any of the two previous standards, the
corresponding vertex is smooth.

As shown in Fig. 8, the aforementioned theory is validated using the Fandisk model. The
Fandisk model is used because it clearly demarcates the corner, ridge, and smooth. The red
circles denote corner, the blue stars denote ridge, and the unmarked regions denote smooth. As
shown in Fig. 8, adequate results were obtained along with the determination of corner, ridge,
and smooth.

The method of varying the weights of cost pair calculation according to the location of
corner, ridge, and smooth, suggested by this study, is as follows:

Defined as κabs = |κ1|+ |κ2|, κabs−max=max(|κ1| , |κ2|), and κabs−min=min(|κ1| , |κ2|)

1. If the corresponding vertex is a corner,
κweight−ith = κabs × κ2abs−max
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2. If the corresponding vertex is a ridge,
κweight−ith = κabs × κabs−max

3. If the corresponding vertex is smooth,
κweight−ith = κabs × κabs−min

When the corresponding vertex is smooth, multiply the smaller value between |κ1|, |κ2|
with κabs. If the corresponding vertex is ridge, the bigger value between |κ1|, |κ2| should be
multiplied with the existing κabs to set a small weight to this feature. When the corresponding
vertex is corner, multiply the bigger value’s square between |κ1|, |κ2| with the existing κabs
in order to set a big weight. When simplification is to be conducted after setting κweight−ith,
multiply this weight value when calculating the cost pair. Using this process, the ridge and
corner areas are preserved, and the smooth area disappears rapidly.

4. EXPERIMENTAL RESULTS

FIGURE 9. Original models for the experiment. Fandisk, sphere, cow, big-
porsche respectively

FIGURE 10. Simplification result from proposed method - Fandisk.
The number of faces is 10000, 3000, 2000, 1000 respectively

In this section, the validity of the proposed architecture is verified through experiments. The
performance of the PC for experiment is conducted on Intel Core i5-6500 @ 3.20GHz, 16.0GB
RAM. The corresponding experiment is conducted using Matlab [15]. Fandisk, sphere, cow,
and big-porsche are used as experimental models. Figure 9 shows the original data of the mod-
els: Fandisk - number of faces is 51,784 and number of vertices is 25,894; sphere - number
of faces is 840 and number of vertices is 422; cow - number of faces is 5,804 and number of
vertices is 2,903; big porsche - number of faces is 10,474 and number of vertices is 5,247.
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FIGURE 11. Simplification result from proposed method - sphere.
The number of faces is 500, 300, 200, 100 respectively

FIGURE 12. Simplification result - cow, The number of faces : 400
QEM, curvature-weighted, discrete curvature, proposed method respectively

FIGURE 13. Simplification result of the breast area. curvature-weighted, dis-
crete curvature, proposed method respectively

Figure 10 shows the experimental results of Fandisk, and Fig. 11 shows the experimental
results of sphere. The results of these models indicate that the simplification was adequate for
the model with no local feature.

Figure 12 shows the experimental results of the model cow. When the number of faces com-
prising the surfaces is 400, the result is similar to that of the curvature-weighted method and
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FIGURE 14. Simplification result - big-porsche , The number of faces : 2000
QEM, curvature-weighted, discrete curvature, proposed method respectively

better than the QEM and discrete curvature methods, as seen from Fig. 12. However, as seen
from Fig. 13, the method proposed in this paper preserved the local features such as the breast
of cow better than the curvature-weighted and discrete curvature methods well, especially in
terms of details.

Finally, Fig. 14 shows the experimental results acquired using the model big-porsche. When
the QEM, curvature-weighted, and discrete curvature methods were used, the antenna part of
the model disappeared when the number of faces was 2,000. However, when the method pro-
posed in this study was used, the antenna part remained.

Next, the simplification method’s validation suggested by this study compares the simplified
gap with the error of the original surface through numerical calculation. This method was sug-
gested by Cignoni et al in 1998 [10]. The calculation method defined in this study uses max
error (max distance) and mean error (mean distance). First, the distance e(p, S) is defined as
follows, in the case of given vertex p and curved surface S.

e(p, S)=minp′∈Sd(p, p′)

Here, d(, ) is the Euclidean distance between two vertices at R3. Based on this definition,
max error E and mean error Em are defined as follows:

E(S1, S2)=maxp∈S1
e(p, S2)

Em(S1, S2)=
1

|S1|

∫
S1

e(p, S2)ds

Tables 1 to 4 list the results obtained from this calculation. Because the tables contain large
amounts of data, they have been placed in the appendix. Here, we attached a graph of Table
1 to 4 for understanding as Fig. 15. Red curve means QEM algorithm, green curve means
curvature weighted algorithm, blue curve means discrete curvature algorithm and black curve
means proposed method.

The corresponding significant figures were approximated to six places of decimals, similar
to the existing studies [5, 7]. The Fandisk and sphere models mostly provided smaller errors
in the case of QEM, curvature-weighted, and discrete curvature methods because they have no
significant local features. In the case of the mean error of the Fandisk model, when the number
of faces is 10,000, the mean error of the proposed method is even smaller than that of the QEM
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QEM Curvature Weighted Discrete Curvature Proposed Method
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FIGURE 15. Comparison of max error and mean error by each model from
experimental results

method. Moreover, in the case of the sphere, when the number of faces is 500, the max error
of the proposed method is smaller than that of the QEM method. In the case of mean error,
because the number of faces of up to 200 is too small, all the values were measured close to 0
by all the methods, except the discrete curvature method.

However, in the case of cow and big-porsche models, the error of the proposed method is
larger than that of the other methods. Because the smooth area of the existing algorithm is pre-
served well, they have small errors with the surface model but lose local features easily. On the
other hand, when the proposed method is used, results with larger errors than the other methods
in the smooth area and the results which preserved the local features well are obtained, which
have been provided in the tables in the appendix. Therefore, the proposed method presents a
slightly larger error than the existing methods.

5. CONCLUSION

This study proposed a vertex-based geometric feature using triangle mesh and surface sim-
plification using the absolute curvature of the mesh vertex. The algorithm was validated by
experiments based on various models, and the difference between the simplified surface and
the original surface was identified through the mean and max errors proposed by max error
E and mean error Em. The following results can be drawn from the simplification algorithm
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proposed in this paper:

1. The corresponding model has similar mean and max distances with the original surface
as other existing algorithms, if it does not have local features.

2. The corresponding model preserves the local features well compared with the other ex-
isting algorithms even if contraction is conducted many times, if it has local features.

We believe the simplified models can be used in mobile devices because they occupy only a
small storage. Future studies will be focused on an algorithm that can enhance the mesh qual-
ity such that the shape of the used meshes is similar to that of an equilateral triangle, thereby
enabling to conduct simplification.

6. APPENDIX

We include tables of the surface simplification results below.

number of face 10000 3000 2000 1000

QEM Max error 0.029167 0.013684 0.021605 0.011801
Mean error 0.000047 0.000050 0.000071 0.000104

curvature Max error 0.060998 0.058773 0.062470 0.065499
weighted Mean error 0.000120 0.000170 0.000250 0.000356
discrete Max error 0.081037 0.074495 0.065953 0.106446

curvature Mean error 0.001061 0.001683 0.002060 0.003539
proposed Max error 0.032843 0.025291 0.025309 0.033128
method Mean error 0.000027 0.000155 0.000228 0.000366

TABLE 1. The comparision of max error and mean error - Fandisk

number of face 500 300 200 100

QEM Max error 1.786316 2.256653 2.694252 5.669952
Mean error 0 0 0 0.001747

curvature Max error 1.437599 2.266510 3.727547 6.090446
weighted Mean error 0 0 0 0.000183
discrete Max error 2.923737 3.839912 5.644363 14.069649

curvature Mean error 0.000775 0.002412 0.004969 0.013689
proposed Max error 1.289047 2.346832 3.196304 5.930771
method Mean error 0 0 0 0.002098

TABLE 2. The comparision of max error and mean error - Sphere
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number of face 1000 500 400 300

QEM Max error 0.027782 0.037439 0.037439 0.044707
Mean error 0.004748 0.008156 0.009769 0.011489

curvature Max error 0.056871 0.059927 0.070074 0.077160
weighted Mean error 0.005876 0.010211 0.012916 0.017208
discrete Max error 0.057034 0.086217 0.072263 0.096554

curvature Mean error 0.006867 0.012343 0.014608 0.016739
proposed Max error 0.100730 0.140226 0.140549 0.221994
method Mean error 0.011295 0.018174 0.022327 0.030334

TABLE 3. The comparision of max error and mean error - Cow

number of face 5000 3000 2000

QEM Max error 0.192862 0.204640 0.186159
Mean error 0.001601 0.004256 0.007477

curvature Max error 0.266027 0.179869 0.105769
weighted Mean error 0.002882 0.006487 0.011577
discrete Max error 0.018842 0.059707 0.071663

curvature Mean error 0.002049 0.005523 0.010006
proposed Max error 0.194190 0.194190 0.189809
method Mean error 0.007813 0.012912 0.019028

TABLE 4. The comparision of max error and mean error - big-porsche
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