• Title/Summary/Keyword: Verification and validation

Search Result 563, Processing Time 0.026 seconds

Economic Validation of Maritime Safety Center in Case of Yeong-Nam Province

  • Lim, Sangseop;Kim, Kyung-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.167-172
    • /
    • 2021
  • After the Ferry Sewol accident, public interest in marine safety has increased. However, as the marine leisure tourism population increases, the number of casualties caused by marine accidents is increasing, so marine safety education is urgently needed. Since facilities related to marine safety education in Korea are geographically biased to the west, regional imbalances in education are significant. Therefore, this study suggested solutions to the problems of developing educational contents and securing budgets and professionals by using idle facilities of the Korea Institute of Maritime and Fisheries Technology(KIMFT) located in Busan as a maritime safety education center. In addition, as a result of estimating demand using the gravity model, it was estimated that the demand would range from 150,000 to 130,000 per year. This study sufficiently proved social policy validity for policy suggestions using existing idle sites as maritime safety education centers based on objective verification methods and is expected to contribute substantially to policy promotion in the future.

Analysis of Relation between Safety Needs and Life Satisfaction of Security Safety System Users (경비안전시스템 이용자들의 안전욕구와 생활만족에 대한 관계 분석)

  • Choi, Jeong-Il;Jang, Ye-Jin
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.141-148
    • /
    • 2018
  • The purpose of this study is to analyze the safety needs and life satisfaction of users of security system. The contents of the questionnaire consisted of "safety need, use satisfaction, life satisfaction". As a result of the analysis, Chronbach's alpha coefficient was calculated as 0.897 for safety needs, 0.888 for use satisfaction, and 0.887 for life satisfaction. The items were found to have internal consistency. In the validation of discriminant validity, both AVE and CR values were found to be 0.6 or more than the reference value of 0.8. The intuitiveness of the variables used in this study was found to be largely secured. As the hypothesis test result, the standardization factor was calculated as 0.993 for 'safety needs ⇨ use satisfaction' and 0.453 for 'use satisfaction ⇨ life satisfaction', and both hypotheses were positive. As a result of the verification, it was analyzed that the higher the user's safety needs, the higher the use satisfaction, and the higher the use satisfaction, the higher the life satisfaction.

  • PDF

Computational Model for Hydrodynamic Pressure on Radial Gates during Earthquakes (레디얼 게이트에 작용하는 지진 동수압 계산 모형)

  • Phan, Hoang Nam;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.323-331
    • /
    • 2019
  • In this study, a computational model approach for the modeling of hydrodynamic pressures acting on radial gates during strong earthquakes is proposed. The use of the dynamic layering method with the Arbitrary Lagrangian Eulerian (ALE) algorithm and the SIMPLE method for simulating free reservoir surface flow in addition to moving boundary interfaces between the fluid domain and a structure due to earthquake excitation are suggested. The verification and validation of the proposed approach are realized by comparisons performed using the renowned formulation derived by the experimental results for vertical and inclined dam surfaces subjected to earthquake excitation. A parameter study for the truncated lengths of the two-dimensional fluid domain demonstrates that twice the water level leads to efficient and converged computational results. Finally, numerical simulations for large radial gates with different curvatures subjected to two strong earthquakes are successfully performed using the suggested computational model.

A Study on the Development and Validation of Information and Environment Convergence Education Program with MonteCarlo Simulation (몬테카를로 시뮬레이션을 적용한 정보·환경 융합 교육 프로그램 개발 및 타당성 검증 연구)

  • Moon, Woojong;Ko, Seunghwan;Boo, Yongho;Park, Yejin;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.2
    • /
    • pp.121-128
    • /
    • 2022
  • In the 2022 revised curriculum general study released by the Ministry of Education in September 2021, environmental issues are emerging as a socially important topic, with climate and environmental education appearing at the forefront along with software education. In this study, by applying Python Monte Carlo simulation, a program for high school students was developed that combines environmental education and software education emphasized in the 2022 revised curriculum. The developed program verified the validity of the program with Lawshe's Content Validity Ratio for science, environment, and information subject education experts, and the verification results showed that the program meets the development purpose, environment, and information subject achievement standards.

Nuclear Power Plant Severe Accident Diagnosis Using Deep Learning Approach (딥러닝 활용 원전 중대사고 진단)

  • Sung-yeop, Kim;Yun Young, Choi;Soo-Yong, Park;Okyu, Kwon;Hyeong Ki, Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.95-103
    • /
    • 2022
  • Quick and accurate understanding of the situation in a severe accident is essential for conducting the appropriate accident management and response using the accident diagnosis information. This study employed deep learning technology to diagnose severe accidents through the major safety parameters transferred from a nuclear power plant (NPP) to AtomCARE. After selecting the major accident scenarios to consider, a learning database was established for particular scenarios affiliated with major scenarios by performing a large number of severe accident analyses using MAAP5 code. The severe accident diagnosis technology, which classifies detailed accident scenarios using the major safety parameters from NPPs, was developed by training it with the established database . Verification and validation were conducted by blind test and principal component analysis. The technology developed in this study is expected to be extended and applied to all severe accident scenarios and be utilized as a base technology for quick and accurate severe accident diagnosis.

A Technique for Protecting Android Applications using Executable Code Encryption and Integrity Verification (실행코드 암호화 및 무결성 검증을 적용한 안드로이드앱 보호 기법)

  • Shim, HyungJoon;Cho, Sangwook;Jeong, Younsik;Lee, Chanhee;Han, Sangchul;Cho, Seong-je
    • Journal of Software Assessment and Valuation
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 2014
  • In this paper, we propose a method for protecting Android applications against reverse engineering attacks. In this method, the server encrypts the original executable code (DEX) included in an APK file, inserts into the APK file a stub code that decrypts the encrypted DEX later at run-time, and distributes the modified APK file. The stub code includes an integrity validation code to detect attacks on itself. When a user installs and executes the APK file, the stub code verifies the integrity of itself, decrypts the encrypted DEX, and loads it dynamically to execute. Since the original DEX is distributed as an encrypted one, we can effectively protect the intellectual property. Further, by verifying the integrity of the stub code, we can prevent malicious users from bypassing our method. We applied the method to 15 Android apps, and evaluated its effectiveness. We confirmed that 13 out of them operates normally.

Study on Performance-based Evaluation Method for Rock Slopes : Deduction of Weight and Validation - Based on the AHP method and Correlation Analysis - (암반비탈면의 성능기반 평가기법 연구 : 가중치 도출 및 검증 - AHP 기법과 상관분석을 중심으로 -)

  • Lee, Jong Gun;Heo, In Young;Kang, Chang Kyu;Ryu, Ho Sang;Chang, Buhm Soo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2016
  • This study aims to suggest the detailed evaluation criteria based on performances for rock slopes. Using the previous research result, final evaluation items are proposed considering characteristics and similarities of each evaluation item. Weight for each evaluation item is deducted using AHP method, verification for suggested evaluation criteria is conducted based on correlation analysis. The research results as follows. All evaluation items have a high statistical correlation with final evaluation result(safety rating). Especially, items of the "rockfall", "ground deformation", "discontinuity characteristic", "instable lithology" were shown the highest in relative correlation coefficient(R), It is judged that items and weight presented in this study well reflect characteristics of rock slopes.

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.

Conceptual Design of Cold Gas Propulsion System of a Ground Simulator for Maneuver and Attitude Control Design Verification of Spacecraft (우주비행체 기동 및 자세제어 설계 검증을 위한 지상 시뮬레이터용 냉가스 추진시스템의 개념설계)

  • Kim, Jae-Hoon;Lee, Kyun Ho;Hong, Sung Kyung;Kim, Hae-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.98-110
    • /
    • 2015
  • Recently, a validation research of maneuvering and attitude control logics of a spacecraft under a ground condition is getting increase by using operating simulators with compact and precise components. For that, a cold gas propulsion system is generally used for maneuvering and attitude control of spacecraft ground simulators for its simplicity and a high reliability. In the present study, major design parameters of a cold gas propulsion system are derived to meet mission requirements based on conceptual design results of a simulator. And additionally, commercial components with proper specifications are selected for system assembly.

A Study on the Development of Test Facility for Safety System Software V/V in Nuclear Power Plant (원자력발전소 안전계통 소프트웨어의 확인/검증을 위한 시험장치 개발에 관한 연구)

  • Lee, Sun-Sung;Suh, Young;Moon, Chae-Joo
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.96-102
    • /
    • 1998
  • The use of computers as part of nuclear safety systems elicits additional requirements-software verification and validation (v/v), hardware qualification-not specifically addressed in general industry fields. The computer used in nuclear power plants is a system that includes computer hardware, software, firmware, and interfaces. To develop the computer systems graded with nuclear safety class, the developing environments have to be required in advance and the developed software have to be verified and validated in accordance with nuclear code and standards. With this requirements, the test facility for Inadequate Core Cooling Monitoring System (ICCMS) as one of safety systems in the nuclear power plants was developed. The test facility consists of three(3) parts such as Input/Output (I/O) simulator, Plant Data Acqusition System (PDAS) cabinets and supervisory computer. The performance of the system was validated by manual test procedure.

  • PDF