• Title/Summary/Keyword: Velocity potential

Search Result 848, Processing Time 0.026 seconds

Time-Domain Analysis of Nonlinear Wave-Making Phenomena by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파현상의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.382-385
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved fly using the high-order spectral method and body potential is solved fly using the high-order boundary element method. Through the combination of these two methods, the wave-making problems fly a submerged sphere moving with the large amplitude oscillation are solved in time-domain. With the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

  • PDF

A Potential-Based Panel Method for the Analysis of a 2-Dimensional Partially Cavitating Hydrofoil (양력판 이론에 의한 2차원 수중익의 부분 캐비티 문제 해석)

  • Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 1989
  • A potential-based panel method is formulated for the analysis of a partially cavitating 2-dimensional hydrofoil. The method employs dipoles and sources distributed on the foil surface to represent the lifting and cavity problems, respectively. The kinematic boundry condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the inner flow region of the foil. The dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the velocity be constant. Green's theorem then results in a potential-based boundary value problem rather than a usual velocity-based formulation. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with more improved accuracy than the zero-thickness hydrofoil theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. It was found that five iterations are necessary to obtain converged values, while only two iterations are sufficient for engineering purpose.

  • PDF

Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut (2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석)

  • Y.G.,Kim;C.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.15-26
    • /
    • 1990
  • This paper describes a potential-baoed panel method formulated for the analysis cf a supercavitating two-dimensional symmetri strut. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lifting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged.

  • PDF

Characteristics of Community-Level Physiological Profile (CLPP) of Biofilm Microorganisms Formed on Different Drinking Water Distribution Pipe Materials (수도관 재질에 따른 생물막 형성 미생물의 Community-Level Physiological Profile(CLPP) 특성)

  • Park, Se-Keun;Lee, Hyun-dong;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2006
  • This study investigated the physiological characteristics of biofilm microorganisms formed onto the different drinking water distribution pipe surfaces. The simulated drinking water distribution pipe system which had several PVC, STS 304, and GS coupons was operated at flow velocity of 0.08 m/sec (Re 1,950) and 0.28 m/sec (Re 7,300), respectively. At velocity of 0.08 m/sec, the number of viable heterotrophic bacteria in the biofilm over the 3 months of operation averaged $3.3{\times}10^4$, $8.7{\times}10^4$, and $7.2{\times}10^3CFU/cm^2$ for PVC, STS, and GS surfaces, respectively. The number of attached heterotrophic bacteria averaged $1.4{\times}10^3$, $5.6{\times}10^2$, and $6.5{\times}10^2CFU/cm^2$ on PVC, STS, and GS surfaces at the system with relatively high flow velocity of 0.28m/sec. The changes of physiological profile of biofilm-forming microorganisms were characterized by community-level assay that utilized the Biolog GN microplates. Biofilms that formed on different pipe surfaces displayed distinctive patterns of community-level physiological profile (CLPP), which reflected the metabolic preference for different carbon sources and/or the utilization of these carbon sources to varying degrees. The CLPP patterns have shown that the metabolic potential of a biofilm community was different depending on the pipe material. The effect of the pipe material was also characterized differently by operation condition such as flow rate. At flow velocity of 0.08 m/sec, the metabolic potential of biofilm microorganisms on GS surface showed lower levels than PVC and STS biofilms. For biofilms on pipe material surfaces exposed to water flowing at 0.28 m/sec, the metabolic potential was in order of PVC>GS>STS. Generally, the levels of the bacterial biofilm's metabolic potentials were shown to be notably higher on pipe surfaces exposed to water at 0.08 m/sec when compared to those on pipe surfaces exposed to water at 0.28 m/sec.

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Development of a new mini straw for cryopreservation of boar semen

  • Almubarak, Areeg;Osman, Rana;Lee, Seongju;Yu, Iljeoung;Jeon, Yubyeol
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • Sperm cryopreservation is a fundamental process for the long-term conservation of livestock genetic resources. Yet, the packaging method has been shown, among other factors, to affect the frozen-thawed (FT) sperm quality. This study aimed to develop a new mini-straw for sperm cryopreservation. In addition, the kinematic patterns, viability, acrosome integrity, and mitochondrial membrane potential (MMP) of boar spermatozoa frozen in the developed 0.25 mL straw, 0.25 mL (minitube, Germany), or 0.5 mL (IMV technologies, France) straws were assessed. Post-thaw kinematic parameters were not different (experiment 1: total motility (33.89%, 32.42%), progressive motility (19.13%, 19.09%), curvilinear velocity (42.32, 42.86), and average path velocity (33.40, 33.62) for minitube and the developed straws, respectively. Further, the viability (38.56%, 34.03%), acrosome integrity (53.38%, 48.88%), MMP (42.32%, 36.71%) of spermatozoa frozen using both straw were not differ statistically (p > 0.05). In experiment two, the quality parameters for semen frozen in the developed straw were compared with the 0.5 mL IMV straw. The total motility (41.26%, 39.1%), progressive motility (24.62%, 23.25%), curvilinear velocity (46.44, 48.25), and average path velocity (37.98, 39.12), respectively, for IMV and the developed straw, did not differ statistically. Additionally, there was no significant difference in the viability (39.60%, 33.17%), acrosome integrity (46.23%, 43.23%), and MMP (39.66, 32.51) for IMV and the developed straw, respectively. These results validate the safety and efficiency of the developed straw and highlight its great potential for clinical application. Moreover, both 0.25 mL and 0.5 mL straws fit the present protocol for cryopreservation of boar spermatozoa.

Electrophoretic Characteristics of the Clay Particles Affected by Chemical Species of Leachate (매립지 침출수 화학종에 따른 점토입자의 전기영동 특성)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam;Park, Jea-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.217-228
    • /
    • 2009
  • In case of application of electrophoresis method for leakage restoration of waste impoundment, main points of consideration were to evaluate the mobility of clay particles by electrophoretic force and capacity of leakage repair in leachate electrolyte system contained with various chemical species. However, the flocculation phenomena of clay particles induced by electrochemical interaction between various chemical species and clay particles would cause the big problems in electrophoresis method. Therefore, a series of laboratory tests such as one-dimensional electrophoresis and gravitational experiments were carried out in order to identify the specific chemical species affected flocculation of clay particles and the range of chemical concentration in leachate. In addition, the characteristics of clay particle behavior with chemical species and concentration range in leachate were analized using the concept of the settling velocity, zeta potential, and electrophoretic velocity.

A Study of the Flow Phenomenon of Water in a Channel with Flat Plate Obstruction Geometry at the Entry

  • Khan, M.M.K.;Kabir, M.A.;Bhuiyan, M.A.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.879-887
    • /
    • 2003
  • The flow in a parallel walled test channel, when obstructed with a geometry at the entrance, can be forward, reverse and stagnant depending on the position of the obstruction. This interesting flow phenomenon has potential benefit in the control of energy and various flows in the process industry In this experiment, the flat plate obstruction geometry was used as an obstruction at the entry of the test channel. The parameters that influence the flow inside and around the test channel were the gap (g) between the test channel and the obstruction geometry, the length (L) of the test channel and the Reynolds number (Re). The effect of the gap to channel width ratio (g/w) on the magnitude of the velocity ratio (V$\_$i/ / V$\_$o/ : velocity inside/ velocity outside the test channel) was investigated for a range of Reynolds numbers. The maximum reverse flow observed was nearly 20% to 60% of the outside velocity for Reynolds number ranging from 1000 to 9000 at g/w ratio of 1.5. The maximum forward velocity inside the test channel was found 80% of the outside velocity at higher g/w ratio of 8. The effect of the test channel length on the velocity ratio was investigated for different g/w ratios and a fixed Reynolds number of 4000. The influence of the Reynolds number on the velocity ratio is also discussed and presented for different gap to width ratio (g/w). The flow visualisation photographs showing fluid motion inside and around the test channel are also presented and discussed.

Molecular dynamics simulation of ultra-low energy ion implantation for GSI device technology development (GSI소자 개발을 위한 극 저 에너지 이온 주입에 대한 분자 역학 시뮬레이션)

  • 강정원;손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.18-27
    • /
    • 1998
  • Molecular dynamicsinvestigations of ion implantation considering point defect generation were performed with ion energies in the range of ~1keV, Simulation starts perfect diamond cubic lattice site. Stillinger-Weber potential and ZBL potential were used to calculate forces between atoms. We have simulated slowing-down of ion velocity, ion trajectory and coupled-coing between ion and silicon. We also discussed distribution of point defect using rdial distribution function. We found that interstitial produced by ion bombardment mainly formed interstitial cluster.

  • PDF

A Study on the Electrification Phenomena Affecting Industrial Disaster (산업재해에 미치는 대전현상에 관한 연구)

  • 육재호;안병준
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.101-106
    • /
    • 1993
  • The streaming current of insulating oil increases with increasing oil velocity and oil amount, A contact potential difference as an energetic state exits in the polymer thin film, both sides of which are contacted by two different metals having different work functions. Accordingly, the potential difference may be a cause for the short circuited transient current flowing through the external circuit. The polymers are electrificated as the electric field Is supplied, and the currents flow with increasing temperature.

  • PDF