DOI QR코드

DOI QR Code

Development of a new mini straw for cryopreservation of boar semen

  • Almubarak, Areeg (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University) ;
  • Osman, Rana (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University) ;
  • Lee, Seongju (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University) ;
  • Yu, Iljeoung (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University) ;
  • Jeon, Yubyeol (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University)
  • Received : 2022.06.10
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

Sperm cryopreservation is a fundamental process for the long-term conservation of livestock genetic resources. Yet, the packaging method has been shown, among other factors, to affect the frozen-thawed (FT) sperm quality. This study aimed to develop a new mini-straw for sperm cryopreservation. In addition, the kinematic patterns, viability, acrosome integrity, and mitochondrial membrane potential (MMP) of boar spermatozoa frozen in the developed 0.25 mL straw, 0.25 mL (minitube, Germany), or 0.5 mL (IMV technologies, France) straws were assessed. Post-thaw kinematic parameters were not different (experiment 1: total motility (33.89%, 32.42%), progressive motility (19.13%, 19.09%), curvilinear velocity (42.32, 42.86), and average path velocity (33.40, 33.62) for minitube and the developed straws, respectively. Further, the viability (38.56%, 34.03%), acrosome integrity (53.38%, 48.88%), MMP (42.32%, 36.71%) of spermatozoa frozen using both straw were not differ statistically (p > 0.05). In experiment two, the quality parameters for semen frozen in the developed straw were compared with the 0.5 mL IMV straw. The total motility (41.26%, 39.1%), progressive motility (24.62%, 23.25%), curvilinear velocity (46.44, 48.25), and average path velocity (37.98, 39.12), respectively, for IMV and the developed straw, did not differ statistically. Additionally, there was no significant difference in the viability (39.60%, 33.17%), acrosome integrity (46.23%, 43.23%), and MMP (39.66, 32.51) for IMV and the developed straw, respectively. These results validate the safety and efficiency of the developed straw and highlight its great potential for clinical application. Moreover, both 0.25 mL and 0.5 mL straws fit the present protocol for cryopreservation of boar spermatozoa.

Keywords

Acknowledgement

This research was supported by the grant from Osong Medical Innovation foundation funded by Chungcheongbuk-do and Cheongju City and with funds provided by Jeonbuk National University.

References

  1. Almubarak AM, Kim W, Abdelbagi NH, Balla SE, Yu IJ, Jeon Y. 2021. Washing solution and centrifugation affect kinematics of cryopreserved boar semen. J. Anim. Reprod. Biotechnol. 36:65-75. https://doi.org/10.12750/JARB.36.2.69
  2. Amaral A, Lourenco B, Marques M, Ramalho-Santos J. 2013. Mitochondria functionality and sperm quality. Reproduction 146:R163-R174. https://doi.org/10.1530/REP-13-0178
  3. Ansari MS, Rakha BA, Andrabi SM, Akhter S. 2011. Effect of straw size and thawing time on quality of cryopreserved buffalo (Bubalus bubalis) semen. Reprod. Biol. 11:49-54. https://doi.org/10.1016/S1642-431X(12)60063-1
  4. Athurupana R and Funahashi H. 2014. 63 Stepwise thawing preserves mitochondria membrane potential of boar spermatozoa extended in glycerol-free medium containing trehalose. Reprod. Fertil. Dev. 27:124-125. https://doi.org/10.1071/RDv27n1Ab63
  5. Broekhuijse MLWJ, Sostaric E, Feitsma H, Gadella BM. 2012. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 90:779-789. https://doi.org/10.2527/jas.2011-4311
  6. Buhr MM, Fiser P, Bailey JL, Curtis EF. 2001. Cryopreservation in different concentrations of glycerol alters boar sperm and their membranes. J. Androl. 22:961-969. https://doi.org/10.1002/j.1939-4640.2001.tb03436.x
  7. Buranaamnuay K, Tummaruk P, Singlor J, Rodriguez-Martinez H, Techakumphu M. 2009. Effects of straw volume and Equex-STM on boar sperm quality after cryopreservation. Reprod. Domest. Anim. 44:69-73. https://doi.org/10.1111/j.1439-0531.2007.00996.x
  8. Choi SH, Lee MJ, Lee KM, Sa SJ, Kim HJ, Jin HJ, Song YS, Park JC. 2014. Effect of supplementation of trehalose, glycerol on conventional freezing and vitrification of boar sperm. J. Emb. Trans. 29:397-401. https://doi.org/10.12750/JET.2014.29.4.397
  9. Dias Maziero RR, Guasti PN, Monteiro GA, Avanzi BR, Hartwig FP, Lisboa FP, Martin I, Papa FO. 2013. Evaluation of sperm kinetics and plasma membrane integrity of frozen equine semen in different storage volumes and freezing conditions. J. Equine Vet. Sci. 33:165-168. https://doi.org/10.1016/j.jevs.2012.06.008
  10. Diskin MG. 2018. Review: semen handling, time of insemination and insemination technique in cattle. Animal 12(s1): s75-s84.
  11. Duplaix M and Sexton TJ. 1984. Effects of type of freeze straw and thaw temperature on the fertilizing capacity of frozen chicken semen. Poult. Sci. 63:775-780. https://doi.org/10.3382/ps.0630775
  12. Flesch FM and Gadella BM. 2000. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469:197-235. https://doi.org/10.1016/S0304-4157(00)00018-6
  13. Grotter LG, Cattaneo L, Marini PE, Kjelland ME, Ferre LB. 2019. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod. Domest. Anim. 54:655-665. https://doi.org/10.1111/rda.13409
  14. Johnson LA, Weitze KF, Fiser P, Maxwell WMC. 2000. Storage of boar semen. Anim. Reprod. Sci. 62:143-172. https://doi.org/10.1016/S0378-4320(00)00157-3
  15. Johnson MS, Senger PL, Allen CH, Hancock DD, Alexander BM, Sasser RG. 1995. Fertility of bull semen packaged in .25- and .5-milliliter french straws. J. Anim. Sci. 73:1914-1919. https://doi.org/10.2527/1995.7371914x
  16. Jovicic M, Chmelikova E, Sedmikova M. 2020. Cryopreservation of boar semen. Czech J. Anim. Sci. 65:115-123. https://doi.org/10.17221/47/2020-cjas
  17. Jun-Feng G, Xiao-Feng Z, Li-Jun G, Qing L, Rong R. 2008. Cryopreservation of boar semen using straws. Chin. J. Agric. Biotechol. 5:231-236. https://doi.org/10.1017/S1479236208002301
  18. Kaneko R, Kakinuma T, Sato S, Jinno-Oue A. 2021. Improvement of short straws for sperm cryopreservation: installing an air-permeable filter facilitates handling. J. Reprod. Dev. 67:235-239. https://doi.org/10.1262/jrd.2021-019
  19. Kang SS, Kim UH, Lee MS, Lee SD, Cho SR. 2020. Spermatozoa motility, viability, acrosome integrity, mitochondrial membrane potential and plasma membrane integrity in 0.25 mL and 0.5 mL straw after frozen-thawing in Hanwoo bull. J. Anim. Reprod. Biotechnol. 35:307-314. https://doi.org/10.12750/JARB.35.4.307
  20. Karan P, Mohanty TK, Kumaresan A, Bhakat M, Baithalu RK, Verma K, Kumar S, Das Gupta M, Saraf KK, Gahlot SC. 2018. Improvement in sperm functional competence through modified low-dose packaging in French mini straws of bull semen. Andrologia 50:e13003. https://doi.org/10.1111/and.13003
  21. Khan IM, Cao Z, Liu H, Khan A, Rahman SU, Khan MZ, Sathanawongs A, Zhang Y. 2021. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals. Front. Vet. Sci. 8:609180. https://doi.org/10.3389/fvets.2021.609180
  22. Kumar A, Prasad JK, Srivastava N, Ghosh SK. 2019. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreserv. Biobank. 17:603-612. https://doi.org/10.1089/bio.2019.0037
  23. Lone SA, Mohanty TK, Bhakat M, Paray AR, Yadav HP, Singh A, Sinha R, Baithalu RK, Rahim A, Kumar R, Kumar P, Shah N. 2020. Modification of French mini-straw plug position for cryopreservation of small doses of bull sperm. Anim. Reprod. Sci. 218:106485. https://doi.org/10.1016/j.anireprosci.2020.106485
  24. Najafi A, Taheri RA, Mehdipour M, Farnoosh G, Martinez-Pastor F. 2018. Lycopene-loaded nanoliposomes improve the performance of a modified Beltsville extender broiler breeder roosters. Anim. Reprod. Sci. 195:168-175. https://doi.org/10.1016/j.anireprosci.2018.05.021
  25. Nordstoga AB, Soderquist L, Adnoy T, Paulenz H. 2009. Effect of different packages and freezing/thawing protocols on fertility of ram semen. Reprod. Domest. Anim. 44:527-531. https://doi.org/10.1111/j.1439-0531.2008.01284.x
  26. Nothling JO and Shuttleworth R. 2005. The effect of straw size, freezing rate and thawing rate upon post-thaw quality of dog semen. Theriogenology 63:1469-1480. https://doi.org/10.1016/j.theriogenology.2004.07.012
  27. Okorie O, Subramoniam R, Charnley F, Patsavellas J, Widdifield D, Salonitis K. 2020. Manufacturing in the time of COVID-19: an assessment of barriers and enablers. IEEE Eng. Manag. Rev. 48:167-175.
  28. Ozkavukcu S, Erdemli E, Isik A, Oztuna D, Karahuseyinoglu S. 2008. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet. 25:403-411. https://doi.org/10.1007/s10815-008-9232-3
  29. Park SH, Jeon Y, Yu IJ. 2017. Effects of antioxidants supplement in porcine sperm freezing on in vitro fertilization and the glutathione and reactive oxygen species level of presumptive zygotes. J. Emb. Trans. 32:337-342. https://doi.org/10.12750/JET.2017.32.4.337
  30. Park YJ and Pang MG. 2021. Mitochondrial functionality in male fertility: from spermatogenesis to fertilization. Antioxidants (Basel) 10:98. https://doi.org/10.3390/antiox10010098
  31. Paul SK and Chowdhury P. 2021. A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. Int. J. Phys. Distrib. Logist. Manag. 51:104-125. https://doi.org/10.1108/IJPDLM-04-2020-0127
  32. Pesch S and Hoffmann B. 2007. Cryopreservation of spermatozoa in veterinary medicine. J. Reproduktionsmed. Endokrinol. 4:101-105.
  33. Raj A, Mukherjee AA, de Sousa Jabbour ABL, Srivastava SK. 2022. Supply chain management during and post-COVID-19 pandemic: mitigation strategies and practical lessons learned. J. Bus. Res. 142:1125-1139. https://doi.org/10.1016/j.jbusres.2022.01.037
  34. Rath D, Bathgate R, Rodriguez-Martinez H, Roca J, Strzezek J, Waberski D. 2009. Recent advances in boar semen cryopreservation. Soc. Reprod. Fertil. Suppl. 66:51-66.
  35. Ravagnani GM, Torres MA, Leal DF, Martins SMMK, Papa FO, Dell'Aqua Junior JA, Alvarenga MA, Andrade AFC. 2018. Cryopreservation of boar semen in 0.5mL straws at low spermatozoa concentration is better than high concentration to maintain sperm viability. Pesqui. Vet. Bras. 38:1726-1730. https://doi.org/10.1590/1678-5150-pvb-5465
  36. Rodriguez-Martinez H and Wallgren M. 2011. Advances in boar semen cryopreservation. Vet. Med. Int. 2011:396181.
  37. Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE, Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Bonet S. 2007. Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction 134:111-121. https://doi.org/10.1530/REP-07-0118
  38. Sharma R, Kattoor AJ, Ghulmiyyah J, Agarwal A. 2015. Effect of sperm storage and selection techniques on sperm parameters. Syst. Biol. Reprod. Med. 61:1-12. https://doi.org/10.3109/19396368.2014.976720
  39. Stevenson JS, Higgins JJ, Jung Y. 2009. Pregnancy outcome after insemination of frozen-thawed bovine semen packaged in two straw sizes: a meta-analysis. J. Dairy Sci. 92:4432-4438. https://doi.org/10.3168/jds.2009-2304
  40. Stuart CC, Vaughan JL, Kershaw CM, de Graaf SP, Bathgate R. 2019. Effect of diluent type, cryoprotectant concentration, storage method and freeze/thaw rates on the post-thaw quality and fertility of cryopreserved alpaca spermatozoa. Sci. Rep. 9:12826. https://doi.org/10.1038/s41598-019-49203-z
  41. Sutkeviciene N, Riskeviciene V, Januskauskas A, Zilinskas H, Andersson M. 2009. Assessment of sperm quality traits in relation to fertility in boar semen. Acta Vet. Scand. 51:53. https://doi.org/10.1186/1751-0147-51-53
  42. Tremoen NH, Gaustad AH, Andersen-Ranberg I, van Son M, Zeremichael TT, Frydenlund K, Grindflek E, Vage DI, Myromslien FD. 2018. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim. Reprod. Sci. 193:226-234. https://doi.org/10.1016/j.anireprosci.2018.04.075
  43. Watson PF. 2000. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60-61:481-492. https://doi.org/10.1016/S0378-4320(00)00099-3
  44. Yeste M. 2015. Recent advances in boar sperm cryopreservation: state of the art and current perspectives. Reprod. Domest. Anim. 50 Suppl 2:71-79. https://doi.org/10.1111/rda.12569
  45. Yu I and Leibo SP. 2002. Recovery of motile, membrane-intact spermatozoa from canine epididymides stored for 8 days at 4 degrees C. Theriogenology 57:1179-1190. https://doi.org/10.1016/S0093-691X(01)00711-7
  46. Zong Y, Sun Y, Li Y, Mehaisen GMK, Yuan J, Ma H, Ni A, Wang Y, Hamad SK, Elomda AM, Abbas AO, Chen J. 2022. Effect of glycerol concentration, glycerol removal method, and straw type on the quality and fertility of frozen chicken semen. Poult. Sci. 101:101840. https://doi.org/10.1016/j.psj.2022.101840