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Abstract

This paper describes a potential-baced panel method formulated for the analysis cf a super-
cavitating two-dimensional symmetri strut. The method employs normal dipoles and sources
distributed on the foil and cavity surfaces to represent the potential flow around the cavitating
hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied
by requiring that the total potential vanish in the fictitious inner flow region of the foil, and
the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential
vary linearly, i.e., the tangential velocity be constant. Green’s theorem then results in a
potential-based integral equation rather than the usual velocity-based formulation of Hess &
Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure
distributions are predicted with improved accuracy compared to those of the linearized lifting
surface theory, especially near the leading edge. The theory then predicts the cavity shape and
cavitation number for an assumed cavity length. To improve the accuracy, the sources and
dipoles on the cavity surface are moved to the newly computed cavity surface, where the

boundary conditions are satisfied again. This iteration process is repeated until the results are

converged.
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1. Introduction

As the loading on blades of marine propeller
increases, cavitation plays an inceasing role in the
unsteady hull forces and also causes severe noise
and vibration problems at the stern. In order to
control these problems at the stern of a ship and
also to design a propeller with a sufficient but not
too much cavitation margin, it is necessary to be
able to predict the extent and behavior of the cavity
on the surface of the propeller blade with much
improved accuracy.

Traditional methods predicting the cavitation
phenomenon are mostly based on the linearized
lifting surface theory.[9]1 Due to the assumption of
thin blade section, the solution near the leading
edge of the blade is not so accurate as to give a
singular pressure peak there. This unusual negative
pressure peak becomes inevitably the source of
inaccurate over-prediction of the cavity extent on
marine propeller.

To overcome this drawback of the lifting surface
theory, the surface panel method is now emerging
where the singularities such as sources and normal
dipoles are distributed on the exact blade surface
rather than on the mean camber surface. (Lee[11],
Yang & Jessup(15), Hess & Valarezo(7)) The
surface panel method has been applied successfully
to the partially cavitating hydrofoil problem by Lee
(103.

The cavity on a marine propeller is called 2 partial
cavily or a super-cavity, depending upon whether
the after end of the cavity terminates upstream of
the trailing edge of the blade or exceecds this edge.
Since both types of cavity may occur on a propeller
blade

capability to predict such cavity behavior equally

simultaneously, it is necessary to acquire
well.

This paper, continuing the work of Lee(10} on
partial cavity problem, describes a solution procedure
required to solve the steady super-cavitating flow
about a symmetric strut with a blunt base.

Comparing especially the non-linear Riabouchinsky
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type cavity termination model with the linearized
cavity closure condition and elliptical termination
model, this paper shows the importance of proper
modeling of the cavity termination. Analytical
solution for the super-cavity flow around the strut
provides a means to evaluate the validity of the
numerical procedure of surface panel method and
the possibility of its extension to propeller cavitation.
Sample calculations are performed to obtain the
cavity geometry, pressure distributions, and section

drags.

2. Formulation of Boundary Value
Problem

Let’s consider the unbounded, steady, irrotational

flow of am inviscid, incompressible fluid past a
cavitating symmetric strut with a blunt base. The
total velocity, V, may be expressed in terms of the
total velocity potential, @, which is defined using
the on-comming velocity, U., the position vector,

x, and the perturbation potential, ¢, as follows,

V=ro m
where
O=U. -z ¢. )

Conservation of the mass applied to the potential
flow gives the Laplace equation as a governing
equation, i.e.,

72@=0, throughout the fluid. (3)

Motion of the flow can be uniquely defined by
imposing the boundary condition on the boundary
surfaces, such that

1. Quiescence condition at infinity:

F&—-U., at infinity, @

2. Flow tangency condition:

Ay = aa(z =0, on the body surface Sp (5)
where 7 is the outward unit normal vector to the
boundary.

The

describe the steady motion of a symmetric strut

conditions stated above are sufficient to
moving in unbounded ideal flow, except a condition
constraining the flow with infinity velocity at the

trailing edge of the foil.
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Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut 17

With the presence of cavity following the strut,
we have to apply the kinematic and the dynamic

boundary condition on the cavity surface and the

cavity closure condition on the after end of the
cavity as follows.
3. Kinematic condition on the cavity surface:

“%‘ =0, on the cavity surface Sc 6

where F(z,y) is a function expressing the cavity
surface.
4. Dynamic condition on the cavity surface:
p=p,, on the cavity surface S¢ )
where p, is the pressure inside the cavity.
5. Cavity closure condition:
t*(x)=-0, at the after end of the cavity. €))

J

P

\,: PO ,,//
vty length |

Fig. 1 Sketch of the strut and cavity boundary
surface

In the case of super-cavity, a detachment condition
of some form is required at the trailing edge of the
strut to set the cavity shape and the circulation, 1,
around the strut in place of the Kutta condition.

6. Detachment condition at the trailing edge of
the strut:

Jim 24-70= lim 15-70 (9
where £4 and 5 are tangential unit vectors at the
strut and cavity surfaces across the trailing edge of
the strut, respectively. More discussions on this arc
given in section 4 (see Fig. 2)

It is shown in Breslin et al.(2] that the flow
tangency condition (5) may be replaced by the con-
dition that the flow interior to the body doesn’t
exist, i.e., the inner velocity potemtial is zero

@~(2)=0, inside the boundary Sj.c (10)
where the negative sign denotes that the velocity
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potential is to be caleulated on the interior to the
strut and the cavity boundary.
USiIlg the Bernoulli equation, we get a relation

between the surface pressure, p, the tangential

velocity, V', the cavitation number, ¢,, and the
pressure coefficient, C,, as follows:
p—p- [V, V¢
Cop=—7T"""—=1-\~F771/>
’ %—pUi < [U..! )
on foil/cavity surface 11)
D-—pv | V4l
L TSP ~1,
JeU2 =)
on the cavity surface (12)

where p.. is the ambient pressure.

According to (11) and (12), the dynamic condi-
tion on the cavity surface (7) can be replaced by
the kinematic condition that |V,| is constant, i.e.,

| V| =const. 13)

In this study, we are interested in the tangential
velocity from which we can derive distributions of
pressure.

If the pressure on the free stremline is equal to
the ambient pressure, it is clear that the length of
the cavity is finite, i.e., the cavity length depends
on the cavitation number, .. The cavity length
should, therefore, be obtained through an iterative
process as a part of solution to the boundary value
problem. With the method of singularity distribution
in mind, we have to assume a cavity length which
is not known a priori. The pressure along the cavity
surface and hence the cavitation number are com-
puted using this assumed cavity length. The com-
will then be

compared with the prescribed cavitation number, ¢,.

puted cavitation number, ¢, comp,

the corresponding tangential
the lift

coefficient, Cy, the cavity volume, the cavity shape

Thereby we get

velocity, V. the cavitation number, o,

and the drag coefficient, Cp.

3. Method of Distribution of Singularity

Let’s consider the piccewise constant distribution
of the sources and normal dipoles on the strut and

cavity surface for analyzing the boundary value
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problem described so far.
Velocity potentials induced by distributed sources

and normal dipoles are

p=[ LD 10g ras, (19)
Pa= J-Eg—% -a—i~log rds, (15)

where r=x—§&, r=|r[ and, g(¢), p(¢) are strengths
of distributed sources and normal dipoles, respec-
tively, and x, & denote position vectors of field
points and singular points, respectively, and log
throughout this paper denotes natural logarithm.
Due to the characteristics of singularities, gove-
rning equation (3) and quidscence condition (4) are
sutomatically satisfied. We may express the internal
flow by means of the distribution of sources on the
cavity surface and normal dipoles on both the strut

and the cavity surfaces as follows:

&O;=Ux-+ jlsc—%—log rds

+- I
SsuSe 2

S0 log rdt, (16)
on

where Sp and S¢ denote the body surface and the
cavity surface, respectively.

Since the left hand side of (16) is known, (16)
becomes an integral equation for unknown source
and normal dipole distributions.

Equation (13), derived from the dynamic boundary
condition on the cavity surface (7), implies that
the velocity potential on the cavity surface has a

linearity, so that we can set

0 =0%,+1Vil [ ds, an

where @},, denotes the velocity potential at the
trailing edge of the strut.

Equation (17) relates the tangential velocity on
the cavity surfade to the velocity potential, which
is valuable and compact in its form.

The source strength representing the thickness of
the cavity can be written as the product of the on-
comming velocity and the first derivative of cavity

thickness as in the case of thin wing theory,

(18)

where v is the y~component of the induced tangential

di*
g=v=|U.l" =,

velocity on the cavity surface.
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Integrating the above equation, we get an expres-
sion for the cavity thickness and then an altenative

form of the cavity closure condition (8),

()= j}ﬁf;—lﬂds:o. 19

4, Detachment Condition at the
Trailing Edge of the Strut

In 1911, Brillouin(3] suggested following physical
conditions to determine the free streamline in the
case of inviscid approximation,

1. The free streamlines are simple curves which
do not intersect the body or each other.

2, The minimum pressure in the steady cavity

flows is obtained only on the free streamline.

e free  streamiine
TRTTIAT TV T YUY -
A M B
\"
< /
STRup )
‘i
\," L,f‘ L/:r)/
y

Fig. 2 Local trailing edge flow for supercavitating
strut,

According to the maximum and minimum principle,
if the velocity posential @ is continuous in a closed
bounded region and is analytic and not constant in
the interior of the concerned domain, the modulus
of the function has 2 minimum or maximum value
on the boundary of that region.

On the other hand, the second condition tells us
that the free streamline is concave to the flow. It
then follows that, in the limiting case of g0, the
cavity becomes infinitely long and the free streamline
can be shown to tend asymptotically to a parabola
near the point of infinity.
following Wu(l14], the

inviscid approximation for the curvature of the free

However, first order

streamline, &, and the body boundary, xs, can be

expressed as follows:
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(as t—1 along {¢t|=1) (20)
2 2
et B2 1L Lo(l1n)
(as t—1 along real ¢) @n

where ¢ is a complex number and a,& are complex
constants. The interval, 0<¢<1, represents the body
and ¢>1 is the cavity on the real axis,

Hence the curvature of the free streamline, &, is
infinite at t=1 if @,#0 and finite if 4,=0. In the

latter case, since the two curvatures are equal,

Ee=Rp="p & (22)
The above result states that the curvature of a
free streamline at the starting point of cavity is
either infinite or equal to the slope of the body.
But the cavity shape of the former is concave to the
flow or has to have a stagnation point at the star-
ting point of the cavity, whereas that of the latter
is convex and has no stagnation point on the
boundary except at the after end of the cavity.
Thus, according to the second condition of Brillouin,
the slope of the streamline at the starting point of
the cavity is equal to that of the body.

In this study, for the numerical analysis of the
cavity, we represent the detachment condition at the
trailing edge of the strut as an alternative form of
(9). As shown in (18), there exists a linear relation
between the slope of the cavity and the source
strength.

Since the slope of the cavity at the starting point
of the cavity can be determined from the body slope,
the source strength at that point is obtained from
(18) as follows:

a1 = U f (), (29)

where g; is the source strength at the starting point
of the cavity and f(x,y) denotes the function
expressing the body surface.

5. Review of Classical Models for the
Cavity After End

A closed body with constant pressure—and hence
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constant velocity—around its surface can’t exist in
exact potential flow but exists in a form of elliptical
body within the linear theory. Thus, it is necessary
to impose a termination condition at the after end
of the cavity for the purpose of terminating the
cavity.

The shape of the after end of the cavity has a
negligible small effect on the lift, however, it plays
a major role on the drag which is due to the exis-
tence of the cavity.

Some of the most important and commonly used
models forming the finite cavity length, as shown
in Fig. 3, are discussed below. We note that, in the
potential flow approximation, the flow energy can’t
be removed to simulate the dissipation without
simultaneous removal of the momentum or mass.
For this reason, any termination condition or devices
can’t provide a good description of the far region
from the body at all whereas they will have validity
near the body.

1. Reentrani Jet Model

This model is suggested by Kreise(8], Efros(5]
and Gilbarg et al.(6} independently. According to
this model, there exists a sink of infinite strength
behind the body so that the bounding free streamlines
reverse their direction at the after end of the cavity
to form a jet. The jet is assumed not to be in
contact with the body by the sink.

In reality, the flow like the reentrant jet can be
observed near the after end of the cavity. Due to

T

%

¢ Jackowsky HMorizontal
Blate

41 Wu's Open Wake

Fig. 3 Cavity termination models,
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this resemblance, although being crude, this model
is favored in many theoretical studies.
2. Riabouchinsky Image Model

In the Riabouchinsky image model, an image of
the body is introduced at a finite distance from the
body downstream to make the cavity close. The
image is placed nomal to the upstream.

The total force acting on the pair of bodies is
zero by the d’Alembert paradox, since the flow
outside the body and the cavity is irrotational.
However, the force acting on the real body alone is
not zero.

This model has a merit of easiness in implemen-
tation compared to the reentrant jet model, especially
in numerical analysis.

3. Wu's Open Wake Model

Wu's open wake model is a modification of Jouko-
wsky’s horizontal plate termination model. Jouko-
wsky’s horizontal plate model introduces introduces
two fixed flat plates parallel to the on-coming
where the
the

reaching the

velocity at the lower and upper points

cavity has a maximum thickness to make

pressure gradually increase, finally
ambient pressure.

As to the wake, the flow past the viscous wake
region consists of two parts, which is classified by
the flow pattern. In the near wake region which
starts from the separation point and ends at an
undetermined point, the free streamline bounding
the wake and ambient flow is assumed as a streamline
along which the pressure has a coustant value. But,
in the far wake region, the flow is described by the
potential flow so that the pressnre continuously
increases up to the value of upstream and hence the
far wake region is represented as a half body.

Wul14) extended this model to the cavity problem
noticing the fact that there are sometimes bubble
cavities and the wake boundary line is a free
streamline as observed in the case of cavity flow.
The wake boundary line with bubble cavities can
be assumed as a cavity boundary under the corres-
the

difference between the wake flow and cavity flow is

ponding pressurc coefficient, But, distinct

the densities inside thd cavity and wake,
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6. Linear Termination Model of the Cavity

The final target of our study is to predict hydro-
dynamic characteristics of marine propellers with
super-cavity and partial cavity. The termination
models quoted in the previous section have some
merits in the two dimensional problem. However, in
the case of unsteady and three dimensional hydorfoils
or marine propellers, it is difficult, in the practical
sense, to apply various kinds of termination models.

Moreover, in the reentrant jet model and Riabou-
chinsky image model, the drag is proportional to
the gab of the jet and the width of the wall in each
model. For this reason, the cavity may be said to
be closed to the first-order.

As to Wu's open wake termination model, the
wake displacement thickness generally decreases
continuously from the region right behind the body
up to the far downstream asymptotically. Experiments
indicate that the effective thickness of the wake
occupied by the bubbles is the same order as the gab
of the the theoretical reentrant jet model or width
of the wall in the Riabouchinsky image model.
These phenomena cannot be described properly by
the potential flow.

For the above reasons, we assume that the shape
of the after end of the cavity terminates linearly.

The linear termination model by Lee[(10] states
that the cavity shape is dependent only on the source
strength and the sum of strengths of sources must
be zero to form a closed body.

To apply Lee’s linear termination model, it is
necessary to preset the stagnation point at the after
end of the cavity as in the case of real flow around
a thick round trailing edge. This is a dominant
factor in asymmetric flow problem. In symmetric
flow, the stagnation point may be coincident with
the after end point of the cavity.

By observing the fact that the velocity on the
cavity surface is constant, except at the after end
of the cavity, we may expect that the final cavity
shape will be elliptic, being exact to the first order.

The non-linear cavity shape may therefore be found

Journal of SNAK, Vol. 97, No. 4, December 1990
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with minimum number of iterations when the cavity
geometry is initially assumed to be elliptic. The
advantage of this so-called elliptic cavity shape
approximation will be evaluated by the numerical

experiments.

7. Discretization of Singularities and
Solution Procedure

Distributing the discretized sources and normal
dipoles on the surface of the strut and the cavity,
we can express the total velocity potential as follows.
Now, assume that strengths of source and normal

dipole of a panel is constant along the panel, i.e.,

#(s)==gt;, on panel j )
q(s)=qs, on panel & (25)
The total potential at the control point of the i-th
panel is
NS
T==0ex; ’_‘quég
¢;=U gc,~i~k§=_i o me“log rds
ND
i 8
+J§ 27[ Jpanelj Bn IOg rds,
f:1,2,"‘,ND (26)

where N? and NS denote the number of dipole and
source panels, respectively.

The above relation can be rewritten according to
the termination model used at the after end of the
cavity.

Applying the detachment condition at the trailing
edge of the strut, the source strength just behind
the base of the strut can be calculated from the
slope of the strut at that point, and hence (26) is

may be written as

0=¢;=U.rxit+ I J Ilog rds
panely

i

AN J panemfmg rds

2n
NS-1
ANt gk
Alg o memlogrds
ND
Y L9
s [ oy i logrds (2D

Due to the symmetry of the present problem, the
number of singularity panels of unknown strengths
will be reduced by half. The total velocity potential
at the control point of the j-th source panel along

KIRFARERSIEE 274 4 9% 19004F 12A

the upper surface of the cavity in the streamwise

direction can be expressed as follows:

‘ i
CD}*‘Dmi‘iZ:[°k§ASm Ji=1,2,--, N5/2. (28)

Since ¢ ;=7 ;= —p; the above relation becomes
"{!su"{‘,”-j‘x‘lytl 'gjjo (29)

where
7
&; :Z,:_/]Sk, (30)
k=1

and g; represents the girth {rom the starting point
of the cavity up to the j-th source panel.

Equation (29) shows that strengths of normal
dipoles on the cavity surface can be expressed as a
linear function of the tangential velocity |V.l, i.e.,
there is no additional unknown dipoles on the cavity
surface.

Upon discretization, the cavity closure condition

(19) will be recast as
N2
1§1 grdsi=0. 3D

Equation (27), (29) and (31) will now form a
system of linear simultaneous equations, which may
be solved with the aid of a mathematical library
function built in computer.

Once strengths of normal dipoles and sources are
found, the new fuction for the modification of the
cavity thickness is computed with (19) and added
in normal direction to the previous cavity surface.
The singularities will then be located on the newly
determined strut and cavity surfaces to form a new
boundary value problem. This process to find out
the cavity geometry is iterated until a sufficient
convergence is obtained. Computations of the pres-
sure distribution, cavity shape and drag coefficient

will then be followed.

8. Numerical Calculations and Discussions

As shown in Fig. 4, for the numerical analysis,
we are to discretize the surface of the strut by half
cosine spacing method along the z-axis, whereas
we discretize the surface of the cavity by spacing
equally along the z-axis with the z-component of

the length of the strut panel adjacent to the trailing
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Fig. 4 Paneling of the strut and the cavity surfaces

edge.

Spacing of the cavity surface with a length leads
to some deviation in drag. However, as mentioned
in the previous section, we have intentions to develo-
pthis symmetric super-cavity program(SYMMCAYV)
up to the level of analyzing the problem of unsteady
and three dimensional hydrofoil, thus, it is necessary
for the purpose of saving the memory size and time
to discretize the cavity and the wake by equal
spacing method.

Numerical calculations have been performed for
the linear termination model, Riabouchinsky’s image
model, and elliptical termination model with varying
the cavity length from 1.8 to 4.6 times chord
length and the base of the strut from 4% to 60%
of the chord.

Especially, in Riabouchinsky's image model, we
introduce a wall whose width is 50% of the base
of the strut instead of the exact image as in the
case of Uhlman(13).

In all cases, G-iterations were carried out to
ensure the convergence. The number of panels on
the surface of the strut was set to 20 and the
number of panels on the surface of the cavity was
determined according to the cavity length. If we
formulate the boundary value problem using the
elliptical termination model, we could obtain fine
result without resorting to any iterative process.

The SYMMCAYV produces the cavitation number,
g, distributions of the pressure coefficient, C,, the
tangential velocity, V., and strengths of sources and
normal dipoles, and the drag coefficient, Cp, for the
strut,

All of the results calculated by SYMMCAV

¥.-G. Kim and C.-S. Lee
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Fig. 5 Pressure and Velocity distribution, linear
termination model, Base/Chord=0.2, Itera-
tions=5, Cavity-length/Chord=1,883
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Fig. 6 Dipole Distribution, linear termination model,
Base/Chord=0.2, Tterations=5, Cavity-
length/Chord=1.883

were compared with the analytical solutions of
Newman(12], Cox[(4] et al. and Acosta[1].

Fig. 5,7 and 9 show the cavity shape and dis-
tributions of pressure and tangential velocity in the
case that the cavity length is 1.8330 times chord
length and the base of the strut is 20% of the chord
when using the linear termination model, Riabouc-
hinsky’s wall and elliptical termination model,
respectively. In those figures, we can see that the
pressure and the tangential velocity are constant
along the surface of the cavity and there exists a
stagnation point at the after end of the cavity

which might be considered to cause reentrant jet.
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Fig. 8 Dipole Distribution, Riabouchinsky termina-
tion model, Base/Chord=0,2, Iterations=5,
Cavity-length/Chord=1,883
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Fig. 9 Pressure and Velocity distribution, elliptic
termination model, Base/Chord=0.2, Itera-
tions=1, Cavity-length/Chord=1.883
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These results are coincident with the kinematic and
the dynamic boundary condition on the surface of
the cavity and physical phenomena.

Fig 6,8 and 10 show the distribution of strengths
of normal dipoles under the same condition as the
previous figures. Strengths of normal dipoles have a
linearity along the surface of the cavity, but some-
what distorted, which is due to the difference in
the girth length of the cavity panels.

In Figs. 11 and 12, we compared the cavitation
number, ¢, and the drag coefficient, Cp, calculated
by SYMMCAV
Newman{12]) under the condition that the base

with analytical solutions (see

5
s 2.00 —
=z
<
© -
0.00 ! -
0,010 i)
4bar
Fig. 13 Cavity length vs. Cavitation number,
Comparison of cavity termination model,
Base/Chord=0.2
9.09 -
oL 00
1w 6.00
S fnd
53 &’1 -
4.00
3 0 LINEAR -
& ELLIPTIC
O WALL
2.0my ——— ANALYTICINEWMAN]
0.0 ! :
0.00 2.00 4.00
o
4Ybase

Fig. 14 Drag vs. Cavitation number, Comparison
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width of the strut is 4% of the chord. The drag
coefficient, Cp, has about 5% deviation from the
analytical solution regardless of the cavity length.
This deviation may be due to the fact that the girth
length of the after end of the cavity.

13 and 14 show the cavitation number,
Co,
SYMMCAYV compared with the analytical solutions
when the base width of the strut is 20% of the
chord,

In Fig. 15, the shapes of the after end of the

Figs.

s, and the drag coefficient, calculated by

cavity using the corresponding termination model

are compared each other.

-0 .20
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Fig. 15 Comparison of geometry of the after end
of the cavity, Base/Chord=0.04, Cavity~
length/Chord=1.883, Base/Chord=0.04
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The results of convergence test under the condition
that the cavily length is 1,830 times chord length
and the base of the strut is 4% of the chord with
varying the number of panels is presented in Fig.
16. As shown in Fig. 16, the final difference of the
cavitation number calculated by SYMMCAV using
30 elements on the surface of the strut is less than
1.6% compared with the analytical solution.

9. Conclusions

1. A potential-based surface panel method is
formulated for the solution of a super-cavitating
flow problem about a 2-dimensional symmetric strut.
The method employs the normal dipole and source
distributions on the strut and the cavity surfaces.

2. The detachment condition at the interface of
the strut base and trailing cavity is found important,

3. The elliptical cavity shape, which is an exact
solution to the linearized cavity flow problem,
provides an excellent initial approximation to the
converged cavity shapes, minimizing the the necessity
of time-consuming iterations.

4. Numerical computations show a good correla-
tion with the analytical solutical solution, at least
the case of linear symmetric flows.

5. Experimental data and results of non-linear
theory on the super-cavity problem are rare. Com-
paring the present non-linear numerical results with
the analytical results of linear theory shows a small

discrepancy between them.
10. Acknowledgement

The authors are grateful to the valuable comments
and discussions of Prof. S.]. Lee of CNU and Drs.
J.T. Lee and C.G. Kang of KRISO,

Sincere thanks are extended to financial support

of Hyundai Maritime Research Institute.

References

{11 Acosta, A.J., “A note on partial cavitation of
flat plate hydrofoils”, Calif. Inst. Technol.

KEEREEE 5278 549 19904 125

2]

37

4]

(61

(6J

8l

)

(10l

(113

(123

a3

[

5
Hydrodyn. Lab. Rept. No.
Cal., 1955.

Breslin, J.P., Van Houten, R.]., Kerwin, J.E.,
Johnsson, C.A., “Theoretical and Experimental

E-10.9, Pasadena,

Propeller-Induced Hull Pressures Arising from
Intermittent Blade Cavitation, Loading, and
Thickness”, SNAME Trans., Vol. 90, 1982.
Brillouin, M., “Les surfaces de glissement de
Helmholtz et la resistance des fluides”, Ann,
Chim. Phys. 23, pp.145-230, 1911.

Cox, A. and Clayden, W., “Cavitating flow
about a wedge at incident”, J. Fluid Mech. 3,
pp.615-617, 1958.

Efros, D., “Hydrodynamical theory of two
dimensional flow with cavitation”, Dokl. Akad.
Nauk SSSR 51, pp.267-270, 1946.

Gilbarg, D. and Rock, D., “On two theories
of plane potential flows with finite cavities”,
Naval Ord. Lab. Memo. 8718, 1946.

Hess, J.L., & Valarezo, W.0., “Calculation of
Steady Flow about Propellers using a Surface
Panel Method”, J. Propulsion, Dec. 1985.
Kreisel, G., “Cavitation with finite cavitation
number”, Admiralty Res. Lab. Rept. No. R1/
H/26, 1946.

Lee, C.S., “Prediction of Steady and Unsteady
with or
Cavitation by Lifting
Surface Theory”, Ph.D. Thesis, Department of
Ocean Engincering, M.I.T., Cambridge, Mass.,
1979.

lee, C.S., “A Potential-based Panel Method
for the Analysis of a 2-dimensional Cavitating
Hydrofoil”, College of Engincering, C.N.U.,
Daejeon, Korea, 1989.

Lee, J.T., “A Potential-based Pamel Method
for the Analysis of Marine Propellers in Steady
flow”, Ph.D. Thesis,
Engineering, M.L.T., Cambridge, Mass., 1987.
Newman, J.N., “Marine Hydrodynamics”, The
MIT Press, Cambridge, Mass., 1977.

Uhlman, J.S., “The Surface Singularity or
Boundary Intergral Method Applied to Super-
cavitating Hydrofoils”, J. of Ship Research,

Performance of Marine Propellers

without Numerical

Department of Ocean



96 ¥.-G. Kim and C.-S. Lee

Vol. 33, No. 1, March 1989, pp.16-20. [15) Yang, C.I. & Jesup, S.D., “Benchmark Analysis

{14 Wu, T.Y., “Cavity and Wake Flows”, Annual of a Series ofsPropellers with a Panel Method”,
Review of Fluid Mechanics, Vol. 4, pp.243- SNAME Popeller ’88 Symp., Virginia Beach,
284, 1972, VA, 1988, pp.17/1-10.

Journal of SNAK, Vol. 27, No. 4, December 1990



