• Title/Summary/Keyword: Velocity feedback Control

Search Result 313, Processing Time 0.027 seconds

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

A Study on Position Control of Hydraulic Single-Rod Cylinder Subjected to Load Disturbance (부하외란을 받는 편로드 유압실린더의 위치제어에 관한 연구)

  • 윤일로;염만오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.89-95
    • /
    • 2003
  • A PID controller integrated with a velocity feedback is designed for fluid power elevator model system in this study. In this case, for outside disturbance load a hydraulic cylinder and a pressure control valve are used. In this method overshoot is reduced and settling time becomes also shorter than the values achieved from the PID controller system only In conclusion a PID controller integrated with a velocity feedback is considered a suitable control method for fluid power elevator system.

Motion Control of Linear Pulse Motor for Artificial Heart

  • Yamada, H.;Mizuno, T.;Izumi, Y.;Wakiwaka, H.;Kataoka, Y.;Karita, M.;Maeda, M.;Kikuchi, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.101-106
    • /
    • 1998
  • This paper deals with the difference of the static and kinetic thrust characteristics of a linear pulse motor(LPM) without and with feedback control for a total artificial heart(TAH). In general, the kinetic thrust of LPM without feedback control decreases as increasing the mover velocity. The kinetic thrust characteristics of the LPM with feedback control are improved approximately 30% as compared with the LPM without feedback control in the high velocity range.

  • PDF

Feedback Linearization of an Electro-Hydraulic Velocity Control System and the Implementation of the Digital State Feedback Controller (전기유압 속도제어 시스템의 궤환 선형화 및 이에 대한 디지틀 상태 궤환 제어의 구현)

  • 김영준;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1036-1055
    • /
    • 1992
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the implementation of the digital state feedback controller is studied. The $C^{\infty}$ nonlinear transfomation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed implementation method is easier than the other proposed methods and it is possible to control in real time. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful..

Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization (역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어)

  • Kwon, Ji-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.

Two-Stage Control of a Container Crane: Time Optimal Travelling and Nonlinear Residual Sway Control

  • Hong, Keum-Shik;Park, Bae-Jeong;Lee, Man-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.159-165
    • /
    • 1998
  • In this paper the sway-control problem of a container crane is investigated. The control loop is divided into two stages. The first stage is a modified time optimal control for trolley traversing. The velocity command for trolley traversing consists of three components ; a reference velocity and two feedback signals for compensating the deviations of trolley and sway angle from their desired trajectories. For trolley's exact positioning the trolley dynamics is identified via an error equation identifier structure. The second stage is a nonlinear residual sway control that starts at the end of first stage. The control design for the second stage is investigated from the perspective of controling an underactuated system, and the control law combines the feedback linearization and variable structure control.

  • PDF

Experimental Study on Active Control of Building Structures by Feedback Variables (피드백 변화에 따른 건물의 능동제어 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.286-294
    • /
    • 1998
  • This paper presents an experimental study on the performance of the active damper device by feedback variables. The damper is a mass-typed active device, which exerts the inertia control force on the building by AC servo motor. The control performance is experimentally analyzed considering the building response and the control force. It is found that the building response is greatly reduced by mass-typed device under the resonant and earthquake loading. Also, the experimental results show that the velocity feedback reduces the building responses with the smallest amount of control force than any other feedback variables.

  • PDF

Robust Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 강인 제어)

  • Ji, Min-Seok;Lee, Yeong-Chan;Lee, Gang-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Control-Gain Estimation of Energy Dissipation Control Algorithms (에너지소산 제어 알고리듬의 제어이득 산정)

  • Lee Sang Hyun;Kang Sang Hoon;Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • This study is on control gain estimation of energy dissipation control algorithms. Velocity feedback saturated, bang bang, and energy gain control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback saturated and energy-gain control algorithms, and chattering problem in bang bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently.