• Title/Summary/Keyword: Velocity Potential

Search Result 833, Processing Time 0.052 seconds

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

The Importance of Age as a Factor of Carpal Tunnel Syndrome management (수근관 증후군 치료결정의 한 요인으로 연령의 중요성)

  • Kim, Ja-Young;Park, Hae-Yoon;Kang, Sung-Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • Background : Carpal tunnel syndrome(CTS) is the most common entrapment neuropathy that refers to a group of signs and symptoms resulting from compression of the median nerve at the wrist. The course of CTS in older patients is different from the younger patients. This difference may be the result of different underlying mechanisms. The different nerve conduction studies of CTS may signify different approaches in management. This study was done to assess the differences in nerve conduction study of CTS in younger and older patients. Methods : This study involved 224 patients who visited Gachon Medical School, Gil Medical Center and was diagnosed by nerve conduction study from October 1997 to October 1999. We compared the results of nerve conduction study to age, especially in between those under 60 years and those 60 years or over CTS patients. Nerve conduction study consists of motor studies of both median nerves(terminal latency, compound action potential) and sensory studies(nerve conduction velocity, nerve action potential). And we also evaluated the variables between younger and older patients group. Those variables include sex, symptom period, laterality, abnormal physical findings and radiculopathy. Results : We found that a significant increase of terminal latency(p<0.1), but a decrease in compound motor action potential(p<0.05) in older patient's group. There was no significant differences in sensory nerve conduction velocity and action potential between those under 60 years and those 60 years or even patients. And also there was no significant difference in sex, symptom period, laterality, abnormal physical findings, radiculopathy between older and younger patients. Conclusions : This study showed a significant increase in the terminal latency and a decrease in compound action potential in older patients. The different nerve conduction studies of CTS by age effect may need different approaches in management.

  • PDF

COMPUTATION AND ANALYSIS OF MATHEMATICAL MODEL FOR MOVING FREE BOUNDARY FLOWS

  • Sohn, Sung-Ik
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.779-791
    • /
    • 2000
  • The nonlinear stage of the evolution of free boundary between a light fluid and a heavy fluid driven by an external force is studied by a potential flow model with a source singlarity. The potential flow model is applied to a bubble and spije evolution for constantly accelerated interface (Rayleigh-Taylor instability) and impulsively accelerated interface (Richtmyer-Meshkow instability). The numerical results of the model show that, in constantly accelerated intergace, bubble grows with constant velocity and the spike falls with gravitational acceleration at later times, while the velocity of the bubble in impulsively accelerated interface decay to zero asymp flow model for the bubble and spike for constantly accelerated interface and impulsively accelerated interface.

  • PDF

Molecular Dynamics Study on the Behavior of a Carbon Nanotube (분자동역학을 이용한 탄소나노튜브의 거동 연구)

  • Huh, J.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.348-351
    • /
    • 2007
  • Simulations of the buckling behavior of a single wall carbon nanotube(SWCNT) was carried out using molecular dynamics simulation. Molecular dynamics simulations were done with 1fs of time step. Tersoff's potential function was used as the interatomic potential function since it has been proved to be reliable to describe the C-C bonds in carbon nanotubes. Compressive force was applied by moving the top end of the nanotube at a constant velocity. Buckling behavior under compressive load was observed for (15,15) armchair SWCNTs with 2nm of diameter and 24.9nm of length. Buckling load and critical strain is obtained from the MD simulation. Deformation occurred on the top region of the CNT because of fast downward velocity.

  • PDF

Systemic search for gas outflows in AGNs and star-forming galaxies

  • Woo, Jong-Hak;Son, Donghoon;Bae, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2016
  • We present a census of AGN-driven gas outflows based on the kinematics of ionized gas and stars, using a large sample of ~11,000 emission line galaxies at z < 0.3, selected from SDSS. First, a broad correlation between gas and stellar velocity dispersions indicates that the bulge gravitational potential plays a main role in determining the ionized gas kinematics. However, the velocity dispersion of the [OIII] emission line is larger than stellar velocity dispersion by a factor of 1.3-1.4, suggesting that the non-gravitational (non-virial) component, i.e., outflows, is almost comparable to the gravitational component. Second, gas-to-stellar velocity dispersion ratio increases with both AGN luminosity and Eddington ratio, suggesting that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the fraction of AGNs with a signature of the non-gravitational kinematics, steeply increases with AGN luminosity and Eddington ratio, while the majority of luminous AGNs presents the non-gravitational kinematics in the [OIII] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [OIII] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs. We will discuss the implication of these results for AGN feedback in the local universe.

  • PDF

Correlation of elastic input energy equivalent velocity spectral values

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.957-976
    • /
    • 2015
  • Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have demonstrated the potential of these intensity measures in the prediction of the seismic structural response. Although some ground motion prediction equations have been developed for these parameters, they only provide marginal distributions without information about the joint occurrence of the spectral values at different periods. In order to build new prediction models for the two equivalent velocities, a large set of ground motion records is used to calculate the correlation coefficients between the response spectral values corresponding to different periods and components of the ground motion. Then, functional forms adopted in models from the literature are calibrated to fit the obtained data. A new functional form is proposed to improve the predictions of the considered models from the literature. The components of the ground motion considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as the prediction of derived intensity measures and the development of conditional mean spectra.

Radiation characteristics of A Circular Loop antenna In Moving Media (운동매질내에서의 Circular Loop Antenna의 개체특성)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.3
    • /
    • pp.12-18
    • /
    • 1970
  • In this paper, the radiation characteristics of a Circular Loop Antenna is studied in a moving homogeneous, isotropic and linear media with a constant velocity much less than the speed of light. In Stuffing the radiation characteristics, Srst vector potential on the loop antenna is derived in the moving media by appling Maxwell-Minkowaski's theory. Next, using the derived relations, the electric and magnetic Seld is calculated for the spec-i Sed wave length ana velocity of the media. The Seld patterns in the moving media are compared with those of stationary media. We find that the intensity of the field is reduced in the direction of the media velocity and increased in the opposite direction only for the component parallel with the plane of the antenna. The deviation from the stationary media is proportional to the velocity of the media and the frequency of source current.

  • PDF

Damage potential of earthquake records for RC building stock

  • Ozmen, Hayri Baytan;Inel, Mehmet
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1315-1330
    • /
    • 2016
  • This study investigates ground motion parameters and their damage potential for building type structures. It focuses on low and mid-rise reinforced concrete buildings that are important portion of the existing building stock under seismic risk in many countries. Correlations of 19 parameters of 466 earthquake records with nonlinear displacement demands of 1056 Single Degree of Freedom (SDOF) systems are investigated. Properties of SDOF systems are established to represent RC building construction practice. The correlation of damage and ground motion characteristics is examined with respect to number of story and site classes. Equations for average nonlinear displacement demands of considered RC buildings are given for some of the ground motion parameters. Velocity related parameters are generally found to have better results than the acceleration, displacement and frequency related ones. Correlation of the parameters may be expected to decrease with increasing intensity of seismic event. Velocity Spectrum Intensity and Peak Ground Velocity have been found to have the highest correlation values for almost all site classes and number of story groups. Common parameter of Peak Ground Acceleration has lower correlation with damage when compared to them and some other parameters like Effective Design Acceleration and Characteristic Intensity.

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

Three-dimensional potential flow due to the montion of a sphere touching a plane wall (평면벽에 접한 구의 운동에 의한 3차원의 Potential 흐름)

  • ;Kim, Moon-Uhn
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.181-184
    • /
    • 1979
  • Three-dimensional potential flow due to the translation of a sphere touching a rigid plane wall or a free wall is investigated by use of tangent sphere coordinates. Exact expressions for the velocity potential are derived in integral formes. Added mass and lift force on the sphere are also calculated.