• 제목/요약/키워드: Velocity Bias

Search Result 105, Processing Time 0.022 seconds

Measurement of error estimation for velocity-aided SDINS using separate-bias Kalman filter (바이어스 분리 칼만필터를 이용한 속도보정 SDINS의 측정오차 추정)

  • Jeon, Chang-Bae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 1998
  • The velocity measurement error in the velocity-aided SDINS on the maneuvering vehicle is unavoidable and degrades the performance of the SDINS. The characteristics of the velocity measurement error can be modeled as a random bias. This paper proposes a new method for estimating the velocity measurement error in the SDINS. The generalized likelihood ratio test is used for detecting the error and a modified separate-bias Kalman filter in the feedback configuration is suggested for estimating the magnitude of the velocity measurement error.

  • PDF

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Speed regulation of DC motor using Kalman filter (칼만필터를 이용한 직류 모터의 속도조절)

  • Kim, Cheon-joong;Kim, Sung-Soo;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.670-674
    • /
    • 1992
  • This paper presents a velocity regulation scheme for a DC motor subjected to random torque and velocity measurement noises of white noise type as well as unknown constant load torque (bias). The scheme separately estimates an unknown bias in addition to state estimation by the bias-free Kalman Filter, and reflects the effect of the bias estimate to the armature input voltage such that velocity variations be regulated. It is shown via computer simulations that the performance of the present scheme is superior to that of the conventional analog PI regulator.

  • PDF

A Design of Free Velocity Bias for GPS Receiver

  • Nguyen, Phi-Long;Kim, Hyun-Soo;Kim, Han-Sil
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.537-542
    • /
    • 2007
  • This paper proposes a 2-step Kalman filter model for land vehicle navigation using civilian-band GPS measurements. The velocity bias caused by the Earth#s rotation would be removed completely when applying this model. Because the linearization of velocity equations in this model is not necessary, the error is significantly reduced. The experiment reveals that estimated position error with stationary data is about 5m during a 15-20 minute interval. The other benefit of this model is that it can be feasibly applied as a GPS receiver module thanks to the small sizes of the necessary manipulating matrices.

Odometer Error Compensation Scheme for Velocity-Aided Strapdown Inertial Navigation System : The Case of Torpedo (속도보정 스트랩다운 관성항법장치의 속도계오차 처리기법 : 수중항체의 경우)

  • Lee, Youn-Seon;Chung, Tae-Ho;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.401-406
    • /
    • 1992
  • When a velocity-aided strapdown inertial navigation system is loaded into a torpedo subjected to an extraneous force by the current, odometer measurement errors occur seriously. In order to compensate for navigation errors induced by large odometer biases, the Kalman Filter with separate bias estimator is applied, which separately estimates an unknown bias, and corrects the state estimate produced by the bias-free Kalman Filter to reflect the effect of the bias estimate.

  • PDF

Simplified Observability Analysis of GPS/INS (GPS/INS 가관측성의 간편한 해석)

  • Hong, Sin-Pyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1243-1251
    • /
    • 2007
  • In this paper a study on the simplified observability analysis of GPS/INS is introduced. Errors for the position, velocity, attitude, gyro and accelerometer biases, and lever arm between GPS antenna and inertial sensors are considered in the observablity analysis. From the error dynamics model in which relatively small terms are neglected, simple observability conditions are obtained such that the observability of GPS/INS is determined by the test on the attutude, gyro bias, and lever arm. Unobservable errors for the position, velocity, and accelerometer bias are determined by those for the attitude, gyro bias, and lever arm. The simplified observability conditions are applied to a constant speed horizontal motion. It is shown that there are seven unobservable modes for the motion including the vertical component of gyro bias. The analytic observability analysis results are confirmed with a covariance simulation.

A Study on the SDINS's Gyro Bias Calibration Method in Disturbances (외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

Assessment of Turbulent Spectral Estimators in LDV (LDV의 난류 스펙트럼 추정치 평가)

  • 이도환;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1788-1795
    • /
    • 1992
  • Numerical simulations have been performed to investigate various spectral estimators used in LDV signal processing. In order to simulate a particle arrival time statistics known as the doubly stochastic poisson process, an autoregressive vector model was adopted to construct a primary velocity field. The conditional Poisson process with a random rate parameter was generated through the rescaling time process using the mean value function. The direct transform based on random sampling sequences and the standard periodogram using periodically resampled data by the sample and hold interpolation were applied to obtain power spectral density functions. For low turbulent intensity flows, the direct transform with a constant Poisson intensity is in good agreement with the theoretical spectrum. The periodogram using the sample and hold sequences is better than the direct transform in the view of the stability and the weighting of the velocity bias for high data density flows. The high Reynolds stress and high fluctuation of the transverse velocity component affects the velocity bias which increases the distortion of spectral components in the direct transform.

Atmospheric Correction and Velocity Aberration for Physical Sensor Modeling of High-Resolution Satellite Images (고해상도 위성영상의 센서모델링을 위한 대기 및 속도 보정)

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.519-525
    • /
    • 2011
  • High-resolution earth-observing satellites acquire substantial amount of geospatial images. In addition to high image quality, high-resolution satellite images (HRSI) provide unprecedented direct georegistration accuracy, which have been enabled by accurate orbit determination technology. Direct georegistration is carried out by relating the determined position and attitude of camera to the ground target, i.e., projecting an image point to the earth ellipsoid using the collinearity equation. However, the apparent position of ground target is displaced due to the atmosphere and satellite velocity causing significant georegistration bias. In other words, optic ray from the earth surface to satellite cameras at 400~900km altitude refracts due to the thick atmosphere which is called atmospheric refraction. Velocity aberration is caused by high traveling speed of earth-observing satellites, approximately 7.7 km/s, relative to the earth surface. These effects should be compensated for accurate direct georegistration of HRSI. Therefore, this study presents the equation and the compensation procedure of atmospheric refraction and velocity aberration. Then, the effects are simulated at different image acquisition geometry to present how much bias is introduced. Finally, these effects are evaluated for Quickbird and WorldView-1 based on the physical sensor model.

Bias Compensation Algorithm of Acceleration Sensor on Galloping Measurement System

  • Kim, Hwan-Seong;Byung, Gi-Sig;So, Sang-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.127.6-127
    • /
    • 2001
  • In this paper, we deal with two bias compensation algorithms of acceleration sensor for measuring the galloping on power transmission line. Firstly, the block diagram of galloping measurement system is given and a galloping model is presented. Secondly, two compensation algorithms, a simple compensation and a period compensation, are proposed. A simple compensation algorithm use the drafts of velocity and distance at fixed periods, so it is useful for constant bias case. Next, a period compensation algorithm can compensate a periodic bias. This algorithm use the previous measured data and compensated data for constant period, where the period is obtained by FFT method. Lastly, the effectiveness of proposed algorithms is verified by comparing between two algorithms in simulation, and its characteristics and the bias error bound are shown, respectively.

  • PDF