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1. INTRODUCTION

Gyroscopes in the conventional Inertial Measurement 

Unit (IMU) may not be suitable for the angular velocity 

measurement of a vehicle with high rotation rates due to its 

range of operation. That is, the conventional Strap-Down 

Inertial Navigation System (SDINS) may not be appropriate 

to the vehicle with high rotation rates (Padgaonkar et al. 1975, 

Mickelson 2000, Costello & Webb 2003). In order to resolve 

this problem, the Gyro-Free Inertial Navigation System 

(GF-INS), in which only accelerometers are used instead of 

gyroscopes, has been proposed (Schuler et al. 1967, Hanson 
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& Pachter 2005). Schuler et al. (1967) showed that rotational 

accelerations were measured from accelerometers arranged 

on a vehicle and angular velocities of the vehicle could be 

obtained by integrating measured rotational accelerations. 

This accelerometers arrangement on the vehicle is called 

Gyro-Free IMU (GF-IMU) (Chen et al. 1994, Hanson & 

Pachter 2005). Theoretically, the angular velocity vector in 

the three dimensional space can be obtained from outputs of 

six accelerometers (Schuler et al. 1967).

When angular velocit ies  are estimated from six 

accelerometers, it is difficult to accurately determine 

the angular velocities if a direct impact, i.e., a high linear 

acceleration or a high angular acceleration is applied to the 

vehicle (Padgaonkar et al. 1975, Santiago 1992). To avoid this 

difficulty, a method using nine accelerometers was proposed 

(Padgaonkar et al. 1975). On the contrary, Chen et al. (1994) 

showed that angular velocities could be obtained by placing 

one accelerometer at the center of each face of a cube even 

though a direct impact is applied to the vehicle. In this 

arrangement, the sensing axis of each accelerometer is along 

the diagonal of respective cube face.
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If angular velocities are estimated by integrating outputs of 

accelerometers, measurement errors of accelerometers are 

accumulated (Padgaonkar et al. 1975). In this case, navigation 

errors of the GF-INS increase more rapidly than those of 

SDINS, in which the angular velocity is measured using 

a gyroscope (Park et al.k 2005). Due to this characteristic, 

a method for reducing angular velocity estimation error 

is required in order to apply the GF-INS to long-term 

navigation.

Algrain & Saniie (1991) estimated the angular velocity using 

a static model between angular velocity and accelerometer 

output instead of integrating the accelerometer output. 

They showed that effect of the Gaussian noise to the angular 

velocity estimate could be reduced by using a linear Gaussian 

estimator based on the linear model with the Gaussian noise. 

Edwan et al. (2011) estimated angular velocities from 

accelerometer outputs using an extended Kalman filter 

with an accelerometer noise model. They showed that 

initial angular velocity error as well as the effect of the 

accelerometer noise could be reduced by considering 

dynamic characteristic between the angular velocity and 

accelerometer output. In addition to this, they showed 

through simulations that the random bias error of the 

accelerometer could be compensated by using an extended 

Kalman filter with only accelerometer noise model when a 

higher-grade accelerometer than the tactical-grade one is 

used.

Since the Micro-Electro Mechanical Systems (MEMS) 

accelerometer is smaller-sized and consumes lower power, 

it is suitable for very small-sized vehicles. Even though 

performance of the MEMS accelerometer has been improved 

and many research results on MEMS accelerometer based 

GF-INS can be found in literatures (Hanson 2005, Pachter et 

al. 2013, Cucci et al. 2016, Nilsson & Skog 2016, Chatterjee et 

al 2017), performance of the MEMS accelerometer still does 

not reach that of a conventional high-grade accelerometer 

(Hanson & Pachter 2005, Cucci et al. 2016). Therefore, in 

order for the GF-INS using MEMS accelerometer to give 

the same or similar performance of that using a high- 

grade accelerometer, the effect of the MEMS accelerometer 

error should be reduced more when the angular velocity is 

estimated (Cucci et al. 2016). As a method to this end, the 

angular velocity can be estimated from the accelerometer 

output using an extended Kalman filter with an accelerometer 

random bias error model.

In this paper, a GF-INS angular velocity estimation 

method is proposed based on an extended Kalman filter with 

an accelerometer random bias error model. The estimated 

angular velocity and navigation results are compared with 

those by other methods.

In the sequel, the angular velocity estimation algorithm 

using an extended Kalman filter is described. in Section 2. In 

Section 3, performance evaluation results of the proposed 

estimation method are presented. Finally, in Section 4, 

concluding remarks and further studies are given.

2. ANGULAR VELOCITY ESTIMATION 
USING EXTENDED KALMAN FILTER

2.1 Gyro-free INS Mechanization

An arrangement of N accelerometers in a vehicle is shown 

in Fig. 1. When the vehicle moves, the acceleration of the 

point where the accelerometer is located is given in Eq. (1) 

(Schuler et al. 1967).

 ( )b b b b b b b
accj ib accj ib ib accj= + × + × ×ώ ω ω rra a  (1)

where ab, ωb
ib and rb

accj (j =1, 2, …, N) are acceleration of the 

center of gravity of the vehicle represented in the body 

frame, the angular velocity of the body frame with respect 

to the inertial frame represented in the body frame and the 

vector from the center of gravity of the vehicle to the j-th  

accelerometer represented in the body frame, respectively. 

Provided that the input axis orientation of the j-th 

accelerometer is dT
accj, the acceleration measured by the j-th 

accelerometer is given in Eq. (2).

 

( )  

        ( ( ))

b b b
accj accj accj accj ib

b b b b
accj ib ib accj accj

y = + ×

+ × × −

T T

T T

d r d ώ

d ω ω r d g

a

 (2)

where gb denotes the gravitation, vector represented in 

the body frame. The measured acceleration vector by all 

accelerometers is given in Eq. (3).

Fig. 1. Accelerometer arrangement in the vehicle.
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Let the terms in Eq. (3) be represented as Eqs. (4-7).

 1 2
b b b
acc acc accNy y y =  

T
Y L  (4)
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 1 2
T b T b T b
acc acc accN =  

T
Dg d g d g d gL  (7)

Let’s define A as Eq. (8).

 3 1

3

( )
b
ib

b

N

N

× −

×

 
= = 
  

ώ T
A

A B B B
A

a

 (8)

Angular velocity differential equation Eq. (9) and 

acceleration equation Eq. (10) can be obtained from Eq. (3).

 
3 3 3b b b

ib ib ib

b b
ib N N N× × ×
= + −

ώ ώ ώ
ω A Y A Dg A N (9)

 
3 3 3b b b

b b
N N N× × ×

= + −A Y A Dg A N
a a a

a  (10)

2.2 Four Accelerometer-triads on the Center of Gravity 

and Three Axes

Consider the arrangement of accelerometers in Fig. 2. 

Four accelerometer-triads are in the center of gravity and 

three axes (Hanson 2005, Edwan et al. 2011). In this case, the 

vectors from the center of gravity to the j-th accelerometer, 

rb
accj(j = 1, 2, …, 12), are given in Eqs. (11-14).

 [ ]1 2 3 0 0 0b b b
acc acc acc= = =r r r  (11)

 [ ]4 5 6 0 0b b b
acc acc acc= = =r r r  (12)

 [ ]7 8 9 0 0b b b
acc acc acc l= = =r r r  (13)

 [ ]10 11 12 0 0b b b
acc acc acc l= = =r r r  (14)

where l denotes the distance from the center of gravity to the 

accelerometer in the axis. Input axis orientations dT
accj(j = 1, 2, 

…, 12) are given in Eqs. (15-17).

 [ ]1 4 7 10 1 0 0acc acc acc acc= = = =T T T Td d d d  (15)

 [ ]2 5 8 11 0 1 0acc acc acc acc= = = =T T T Td d d d  (16)

 [ ]3 6 9 12 0 0 1acc acc acc acc= = = =T T T Td d d d  (17)

Then, Eq. (18) is obtained from Eq. (8).

3 12

0 1 1 0 0 0 0 0 1 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0 0
2

1 1 0 0 1 0 1 0 0 0 0 0
b
ib l×

− − 
 = − − 
 − − 

ώ
A  (18)

Inserting Eq. (18) into Eq. (9), Eq. (19) is obtained (Algrain 

& Saniie 1991).
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 (19)

where (ωb
ib)x, (ω

b
ib)y, and (ωb

ib)z are x, y, and z axis component of 

ωb
ib, respectively. Inserting Eqs. (11-17) into Eq. (10), Eqs. (20-

25) are obtained.

 5 2 7 1
1( ) ( ) ( )
2

b b b b b b
ib x ib y acc acc acc accy y y y

l
= − + −ω ω  (20)

  

  6 3 10 1
1( ) ( ) ( )
2

b b b b b b
ib x ib z acc acc acc accy y y y

l
= − + −ω ω  (21)

 9 3 11 2
1( ) ( ) ( )
2

b b b b b b
ib y ib z acc acc acc accy y y y

l
= − + −ω ω  (22)

 2
4 1 8 2 12 3

1(( ) ) ( )
2

b b b b b b b
ib x acc acc acc acc acc accy y y y y y

l
= − − + − +ω  (23)

 2
8 2 4 1 12 3

1(( ) ) ( )
2

b b b b b b b
ib y acc acc acc acc acc accy y y y y y

l
= − − + − +ω  (24)

 2
12 3 4 1 8 2

1(( ) ) ( )
2

b b b b b b b
ib z acc acc acc acc acc accy y y y y y

l
= − − + − +ω  (25)

Fig. 2. 4 accelerometer-triads at the center of gravity and three axes.
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2.2.1 Extended Kalman filter without accelerometer random 

bias error model

Let the state for the Kalman filter be given in Eq. (26).

 1 2 3[ ] ( ) ( ) ( )b b b
ib x ib y ib zx x x  = =  

TTx ω ωω  (26)

If the probability distribution of the noise in the 

accelerometer output yaccj(j = 1, 2, …, 12) is white Gaussian, 

the process model Eq. (27) is obtained from Eq. (19).
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 (27)

where w'accj(j = 1, 2, …, 12) denotes white Gaussian noise of the 

j-th accelerometer. Relations between angular velocity and 

accelerometer output can be written in Eqs. (28-33) from Eqs. 

(20-25).
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The measurement model Eq. (34) is obtained from Eqs. 

(28-33).

 2 2 2
1 2 1 3 2 3 1 2 3( ) x x x x x x x x x = + = + 

T
z x v vh  (34)

where v is given in Eq. (35).
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The process model Eq. (27) can be discretized into Eq. (36) 

(Brown & Hwang 1997).

 
1k k k k k k+ = + +x Φ x Г u w   (36)

where xk, Φk, uk, Γk and wk are given in Eqs. (37-41), 

respectively.
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The measurement zk can be written in Eq. (42) from Eq. 

(34).

2 2 2
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where vk is given in Eq. (43).
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2.2.2 Extended Kalman filter with accelerometer random bias 

error model

Let the state for the Kalman filter be given in Eq. (44) when 

the accelerometer random bias errors are included in the 

state vector.

 
[ ]1 2 15

1 2 12   ( ) ( ) ( )

=

 =  

L

Lb b b
ib x ib y ib z

x x x

b b b

T

T

x

ω ω ω   (44)

where bj(j =1, 2,…, 12) denotes the random bias error of 

the j-th accelerometer. If the noise of the accelerometer is 

represented as a random bias error and white Gaussian 

noise, the process model Eq. (45) is obtained.
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Relations between angular velocities and accelerometer 

outputs can be written in Eqs. (46-51) from Eqs. (20-25).
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The measurement model Eq. (52) is obtained from Eqs. 

(46-51).
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where v is given in Eq. (53).
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Process model (45) is discretized into (54) (Brown & 

Hwang 1997).

 
1k k k k k k+ = + +x Ф x Г u w  (54)

where  xk, Φk, uk, Γk and wk are given in Eqs. (55-59), 

respectively.
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The measurement  can be written in Eq. (60) from Eq. (52).
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where vk is given in Eq. (61).
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3. PERFORMANCE EVALUATION

In order to evaluate performance of the proposed GF-INS 

algorithm, computer simulations were carried out. Angular 

velocity estimation performance and navigation performance 

were observed when the vehicle rotated around the X-axis of 

the body frame under the placement of accelerometers given 

in Fig. 2 in Section 2.

Fig. 3 shows the software platform for the performance 

evaluation. The platform is composed of sensor output 

generator and GF-INS algorithm. The reference trajectory 

generator in the sensor output generator generates three 

dimensional reference trajectory. The true data generator 

generates true acceleration and angular velocity from the 

reference trajectory. The accelerometer output generator 

generates outputs of four accelerometer triads that are 

arranged as shown in Fig. 2 using output of inertial data 

generator and Eq. (3). The accelerometer errors are added to 

the accelerometer outputs. The GF-INS algorithm consists 

of the angular velocity estimator and SDINS algorithm. 

The angular velocity estimator estimates angular velocity 

and acceleration of the vehicle from accelerometer output. 

SDINS algorithm calculates position, velocity, and attitude 

from the estimated angular velocity and acceleration. 

Angular velocity output of the angular velocity estimator and 

reference angular velocity were compared for performance 

Fig. 3. Software platform for performance evaluation.
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evaluation. Navigation results of the SDINS algorithm were 

also compared with reference trajectories.

Parameters for generating reference trajectory are shown 

in Table 1 and generated reference trajectories are given in 

Figs. 4-6. The vehicle rotates in 3 Hz (1080 deg/s) around the 

roll axis while it moves parabolically.

Fig. 7 shows angular velocity and acceleration outputs of 

the true data generator for the reference trajectory. The X-axis 

angular velocity is 1080 deg/s. The angular velocities of the 

Y-axis and the Z-axis vibrates in 3 Hz due to the rotation and 

the maximum value is 1.17 deg/s where the pitch angle is 0 

deg.

Table 2 shows specification of the accelerometers 

used in the performance evaluation. Noise density and 

bias repeatability were considered for automotive grade, 

tactical grade, and navigation grade accelerometers. In the 

simulations, the scale factor error was not considered.

For the performance evaluation, 25 Monte Carlo 

Fig. 4. Flight path of vehicle.

Fig. 4. Reference trajectory.

Fig. 6. Reference roll trajectory for 1 second.

Fig. 7. Angular velocity and acceleration of reference trajectory.

Table 1. Parameters for reference trajectory generation.

Parameters Value

Initial value

Latitude (deg)
Longitude (deg)
Altitude (m)
Speed (m/s)
Roll (deg)
Pitch (deg)
Heading (deg)

36
127

0
684

0
45
45

Max altitude (m)
Roll axis revolution rate (Hz, deg/s)
Flight time (s)
Sampling rate (Hz)

13983
3, 1080

98.7
1000

Table 2. Specification of accelerometers.

Performance 
parameter (1 σ)

Automotive 
grade

(IAM-20381,
invenSense)

Tactical grade
(RBA500, 

Honeywell)

Navigation 
grade

(QA2000, 
Honeywell)

Noise density (μg/√Hz)
Bias repeatability (mg)

135
50

30
2.5

1.3
0.025
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simulation runs were carried out for the GF-INS with the 

accelerometers in Table 2 (Rubinstein 1981). The angular 

velocity estimation and navigation performance of the 

integration method, KF without accelerometer bias model, 

and KF with accelerometer bias model were compared. In 

the integration method, angular velocity was obtained by 

integrating Eq. (9).

Figs 8 and 9 show outputs of the 4 accelerometer triads 

arranged in Fig. 2 when tactical grade accelerometers are 

used. The distance between accelerometer triads is l = 0.1 

m. It can be observed in Fig. 8 that the outputs of the triad 

A located in the center of gravity of the vehicle is identical 

with those in Fig. 7. Since the pitch rate is less than 1.0 deg/

s and there is no variation of heading angle by the parabolic 

motion in Fig. 5, outputs of accelerometers of the GF-INS are 

gravitational acceleration and centripetal acceleration by the 

rotation of roll axis. Since the accelerometer triad B is located 

in the roll axis of the vehicle, the output is similar to that of 

accelerometer triad A. The accelerometer triads C and D can 

measure the centripetal acceleration since they are located in 

the distance l from the rotation axis in Fig. 2. Therefore, the 

centripetal accelerations in Fig. 9 are measured by the Y axis 

accelerometer of the accelerometer triad D and the Z axis 

accelerometer of the accelerometer triad D. In this case, the 

centripetal acceleration is 35.4 m/s2 (= l·ω2 = 0.1×(3·2π)2) at t = 

0 s.

Figs. 10-14 show simulation results for the GF-INS 

using tactical grade accelerometer. Fig. 10 shows angular 

velocity Root-Mean-Square Error (RMSE) for three angular 

Fig. 8. Outputs of accelerometer triad A and B of GF-INS using tactical 
grade accelerometer.

Fig. 10. Angular velocity RMSE of GF-INS using tactical grade 
accelerometer.

Fig. 11. Estimated angular velocity error from KF without/with 
accelerometer bias model of GF-INS using tactical grade accelerometer.Fig. 9. Outputs of accelerometer triad C and D of GF-INS using tactical 

grade accelerometer.
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velocity estimation methods. The angular velocity error of 

the integration method increases as time goes due to the 

accelerometer bias error. Angular velocity errors of the 

Kalman filters are constants. Kalman filter with accelerometer 

bias model estimates the angular velocity more accurately 

than that without the accelerometer bias model.

Fig. 11 and Table 3 shows estimated angular velocity errors 

from the error covariance matrix of the Kalman filter. As the 

result in Fig. 10, angular velocity estimation performance 

of the X-axis, which is rotation axis of the vehicle, is better 

than others. Fig. 12 shows accelerometer bias estimation 

error of the Kalman filter with accelerometer bias model. 

The X-axis accelerometer bias estimation performance in the 

accelerometer triad A and B, which are located at the center 

of gravity and rotation axis of the vehicle, is better than others. 

On the other hand, The Z-axis and Y-axis accelerometer bias 

estimation performance in the accelerometer C and D are 

better than others. The Z-axis and Y-axis in the triad C and D 

are orthogonal to the direction of the centripetal acceleration, 

respectively.

Figs. 13 and 14 show the mean Root-Sum-Square Error 

(RSSE) of the GF-INS output and attitude RMSE of the GF-

INS for the three angular velocity estimation methods. The 

GF-INS which uses the Kalman filter with accelerometer bias 

model gives two times more accurate navigation performance 

than that uses the Kalman filter without accelerometer bias 

model.

In Tables 4-6, angular velocity errors and navigation 

errors are shown for the accelerometers in Table 2. It can be 

seen from Table 4 that the Kalman filter with accelerometer 

bias model gives two times more accurate angular velocity 

estimate of the X-axis and three times more accurate 

Fig. 12. Estimation error of accelerometer bias from KF with accelerometer 
bias model of GF-INS using tactical grade accelerometer.

Fig. 14. Attitude RMSE of GF-INS using tactical grade accelerometer.

Fig. 13. Mean RSSE of GF-INS output using tactical grade accelerometer.

Table 3. Estimated angular velocity mean error from KF without/with 
accelerometer bias model of GF-INS using tactical grade accelerometer.

Estimated angular 
velocity mean error (deg/s)

KF without bias model KF with bias model

X axis
Y axis
Z axis

0.816
1.128
1.129

0.876
1.294
1.293

Table 4. Angular velocity and navigation error result of GF-INS using 
automotive grade accelerometer.

Mean Error
Automotive grade (IAM-20381, InvenSense)

Integration
KF without bias 

model
KF with bias 

model
Angular 
velocity
(deg/s, RMS)

X axis
Y axis
Z axis

14134.440
13051.670
14867.250

 10.874
 18.344
 15.321

5.500
6.417
5.535

Position (m, RSS)
Velocity (m/s, RSS)
Attitude (deg, RSS)

5324.097
125.641
141.311

3851.264
103.484
102.244

3798.359
103.447
100.527
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angular velocity estimate of the Y-axis and Z-axis than 

Kalman filter without accelerometer bias model for the 

automotive grade accelerometer. However, there is no big 

difference in the navigation performance since the values of 

the accelerometer errors are large. It can also be seen from 

Table 5 that the Kalman filter with accelerometer bias model 

gives two times more accurate navigation performance 

than Kalman filter without accelerometer bias model for 

the tactical grade accelerometer as shown in Figs. 10-13. 

There are no big differences in the angular velocity estimate 

performances to the Kalman filter models for the navigation 

grade accelerometer in Table 6 since the bias error is less 

than noise. The Kalman filter with the bias model gives better 

navigation performance than others.

4. CONCLUDING REMARKS AND FURTHER 
STUDIES

In this paper, in order to improve navigation performance 

of the gyro-free inertial navigation system, an angular 

velocity estimation algorithm has been proposed based on an 

extended Kalman filter with an accelerometer random bias 

model. 

The estimated angular velocity and navigation outputs by 

the proposed algorithm of a vehicle with 3 rev/s rotation rate 

were compared with those by other methods which are based 

on the integration method and an extended filter without an 

accelerometer random bias model. The angular velocity and 

navigation output estimations were performed for navigation 

grade, tactical grade, and automotive grade accelerometers. 

It has been observed that the proposed method gave better 

results than other methods.

In the future, effect of the scale factor error of the 

accelerometer, alignment of GF-INS, optimal placement of 

accelerometers in GF-IMU and Global Positioning System/

GF-INS will be studied.
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