• 제목/요약/키워드: Vehicle number recognition

검색결과 107건 처리시간 0.051초

신경망 영상인식을 이용한 인가/비인가 차량 인식 시스템 연구 (The study of Authorized / Unauthorized Vehicle Recognition System using Image Recognition with Neural Network)

  • 윤찬호
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.299-306
    • /
    • 2020
  • 신경망을 이용한 영상인식은 여러 분야에 널리 사용되고 있다. 본 연구에서는 차량 번호 인식 및 특정 구역 입출 시 통제에 필요한 인가/비인가 차량 인식 시스템을 연구하였다. 이 시스템은 영상을 인식하는 기능을 갖추고 있어 차량 번호에 대한 모든 정보를 확인하고, 차량 번호판을 정확히 인식할 수 있는 기능을 추가하였다. 그 밖에 신경망을 이용하여 좀 더 빠르게 차량번호를 확인할 수 있도록 하였다.

자동차 번호판 인식 성능 향상에 관한 연구 (A Study on improving the performance of License Plate Recognition)

  • 엄기열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식 (Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network)

  • 이재수;김수인;서춘원
    • 전자공학회논문지T
    • /
    • 제35T권3호
    • /
    • pp.46-52
    • /
    • 1998
  • 본 논문에서는 차량에 부착된 번호 판을 컴퓨터에 입력한 후 이를 색 분해법과 역전파 신경망을 이용하여 자동차 번호를 고속으로 추출할 수 있는 방법을 제시하였다. 칼라 비디오 카메라에 의해 컴퓨터에 입력되는 자동차의 동화상을 R, G, B 신호로 분리한 후 승용차의 번호판 색상을 이용하여 R, G ,B의 각 농도에 맞는 임계치를 설정하여 2치화 시켜 번호판 영역을 추출한 후에 2 치화된 이 화상 신호를 프레임 버퍼에 기록하여 컴퓨터의 화상 데이터로 입력시켰다. 그리고 문자 인식 알고리즘을 적용한 후 문자 인식을 개선시키기 위해 역전파 신경 회로망을 적용하여 차랑 번호판 인식 시스템을 구현하였다. 또한 주변의 유사 색상의 존재로 인한 흔돈을 극소화시키기 위해 차량 번호판의 직사각형 구조를 이용하여 수평.수직선 추출 알고리즘을 사용하였으며 실험 결과 고속으로 차량 번호판 추출 및 인식이 가능함을 보였다.

  • PDF

다중 역전파 신경망을 이용한 차량 번호판의 인식 (Recognition of vehicle number plate using multi backpropagation neural network)

  • 최재호;조범준
    • 한국통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.2432-2438
    • /
    • 1997
  • 본 논문은 CCD 카메라로부터 얻어진 차량 영상에서 번호판 영역이 일정한 패턴의 광강도를 지니는 특징을 이용하여 번호판 영역을 추출학 문자인식을 개선하기 위하여 단일 역전파 신경망 대신 다중 역전파 신경망으로 차량 번호판 인식 시스템을 구현하였다. 본 논문의 실험 결과, 효율적인 문자 영역의 추출이 가능하고, 기존의 단일 역전파 방법보다 학습 시간이 단축되고 인식율이 향상됨을 보인다.

  • PDF

신경회로망을 이용한 자동차 종류 및 차량번호 자동인식에 관한 연구 (A Study on Recognition of Automobile Type and Plate Number Using Neural Network)

  • 배윤오;이영진;장용훈;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1107-1109
    • /
    • 1996
  • In this paper, we discuss the automatic recognition system of vehicle types and licence plate numbers using artificial neural networks, which will be used as vehicle identifier. We confine to expose the vehicle licence number for violating bus lane and stolen cars. Therefore, the vehicle height, width and distribution profile are used as the feature parameters of vehicle type. This system is composed of two parts: one is an image preprocessor of vehicle images and the other one is a pattern classifier by neural networks. The experimental results show that our method has good results for the recognition of vehicle types and numbers.

  • PDF

CNN 기법을 이용한 자동차 번호판 인식법 연구 (A Study on the Vehicle License Plate Recognition Using Convolutional Neural Networks(CNNs))

  • 응쿤드와나요 세스;채규수
    • 미래기술융합논문지
    • /
    • 제2권4호
    • /
    • pp.7-11
    • /
    • 2023
  • 본 연구에서는 Convolutional Neural Networks(CNNs) 기법을 이용하여 차량 번호판을 인식하는 방법을 제시하였다. 차량 번호판은 일반적으로 차량의 공식 식별 목적으로 사용됩니다. 대부분의 일반적인 광학 문자 인식(OCR) 기술은 문서에 인쇄된 문자를 인식하는 데는 효과적이지만 번호판의 등록 번호는 식별할 수 없다. 그리고 번호판 감지에 대한 기존 접근 방식에서는 차량이 움직이지 않고 정지해 있어야 한다. 번호판 감지에 대한 이러한 문제를 해결하기 위해 CNN 기법을 활용한 번호판 인식 기법을 제안한다. 먼저 획득된 차량 번호판 이미지의 데이터베이스를 생성하고 CNN 기법을 활용하여 자동차 번호판 문자를 인식한다. 본 연구의 결과는 주차관리 시스템과 단속 카메라 등에 유용하게 활용 될 수 있다.

객체 검출과 한글 손글씨 인식 알고리즘을 이용한 차량 번호판 문자 추출 알고리즘 (Vehicle License Plate Text Recognition Algorithm Using Object Detection and Handwritten Hangul Recognition Algorithm)

  • 나민원;최하나;박윤영
    • 한국IT서비스학회지
    • /
    • 제20권6호
    • /
    • pp.97-105
    • /
    • 2021
  • Recently, with the development of IT technology, unmanned systems are being introduced in many industrial fields, and one of the most important factors for introducing unmanned systems in the automobile field is vehicle licence plate recognition(VLPR). The existing VLPR algorithms are configured to use image processing for a specific type of license plate to divide individual areas of a character within the plate to recognize each character. However, as the number of Korean vehicle license plates increases, the law is amended, there are old-fashioned license plates, new license plates, and different types of plates are used for each type of vehicle. Therefore, it is necessary to update the VLPR system every time, which incurs costs. In this paper, we use an object detection algorithm to detect character regardless of the format of the vehicle license plate, and apply a handwritten Hangul recognition(HHR) algorithm to enhance the recognition accuracy of a single Hangul character, which is called a Hangul unit. Since Hangul unit is recognized by combining initial consonant, medial vowel and final consonant, so it is possible to use other Hangul units in addition to the 40 Hangul units used for the Korean vehicle license plate.

질감을 이용한 차량모델 인식 알고리즘 (Algorithm Based on Texture for the Recognition of Vehicles' Model)

  • 이효종
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.257-264
    • /
    • 2005
  • 사회가 발전하면서 자동차의 수요도 세계적으로 급증하고 있다. 교통제어나 차량에 연관된 범죄 둥을 해결하는데 자동차의 인식 기술이 중요하기 때문에 이에 관련된 번호판 인식이나 교통량 측정에 관한 연구는 오래 전부터 수행되어왔다. 본 논문에서는 주행차량의 제조회사와 차량 모델을 인식하는 방법을 제시하였다. 차종의 인식은 차량 전면부 영역의 질감을 이용하여 인식하였다. 번호판 상단의 라디에이터 영역에서 질감 특징자를 추출하여 신경망을 통한 차종별 학습을 시켜서 인식을 시도하였다. 제안 알고리즘에서 차종의 정인식은 $93.7\%$, 이종차량의 감별은 $99.7\%$로 양호하게 나타났다.

훈련예제 병합을 이용한 자동차 차량번호판 문자인식 성능 향상 방안 (Vehicle License Plate Recognition Using the Training Data's Annexation)

  • 백남철;이상협;류광렬
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.349-352
    • /
    • 2006
  • 자동차 수의 급증으로 야기되는 교통혼잡, 교통사고, 주차난 등의 많은 문제에 효율적으로 대응하기 위해서는 제한된 인력과 비용을 사용하는 자동차 관리가 필수적인데 이를 위한 많은 연구들이 국내외적으로 현재 진행되고 있다. 현재 진행되고 있는 여러 연구 분야 중에서 특히 자동차의 차량번호판인식 기술은 법규위반 차량 식별, 통행료 징수, 자동차세 징수, 도난 도주 차량 확인 및 주차 관리 등의 많은 분야에 응용되고 있다. 자동차의 차량번호판 문자 인식 문제와 같이 훈련예제 수집 비용이 많이 드는 경우에 제한된 수의 훈련예제를 최대한 활용하여 분류성능을 향상시키기 위한 방안의 하나로, 수집된 훈련예제들로부터 가상의 예제를 생성하고, 생성된 가상예제를 훈련예제로 추가하여 학습하는 여러 연구가 수행된 바 있다. 본 논문에서는 차량번호판 문자 인식의 성능 향상을 위해 수집된 예제들을 적절히 병합하여 가상의 예제를 생성하는 방안에 관해 기술하고, 문자인식 분야에서 일반적으로 많이 사용되는 여러 알고리즘에 대하여 다양한 가상예제 생성방안 및 다양한 생성비율에 따른 실험을 통해 그 효용성을 확인한다.

차량 식별마크와 번호판 인식을 통한 차량인식 (Vehicle Recognition with Recognition of Vehicle Identification Mark and License Plate)

  • 이응주;김성진;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제8권11호
    • /
    • pp.1449-1461
    • /
    • 2005
  • 본 논문에서는 차량의 식별마크 분류 및 차량번호판 인식을 통한 차량인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 먼저 입력 차량영상으로 부터 잡음제거, 세선화 과정 등 전처리 과정들을 수행하고 명암값 변화 빈도 분포를 사용하여 차량식별마크와 번호판 영역을 추출하였다. 또한 추출된 후보 영역으로부터 차량 식별마크와 번호판 영역의 구조적 특성 정보를 사용하여 차량 식별마크, 번호판의 문자 및 숫자를 분류하였으며, 하이브리드 패턴벡터 및 수직수평 패턴벡터를 사용하여 식별마크, 문자 및 숫자를 인식하여 차량 정보 인식율을 개선하였다. 제안한 알고리즘에서는 차량의 식별마크가 차량의 종류에 따라 독립적인 특성, 식별마크와 번호판 영역에서는 문자와 배경이 뚜렷하게 구별되는 특성 및 수평 및 수직빈도수 분포가 식별마크 및 번호판 이외의 영역과 뚜렷이 구별된다는 특성들을 이용하였다. 제안한 방법의 성능을 확인하기 위하여 다양한 환경에서 촬영된 350여개의 영상에 대하여 차량인식 실험을 수행하였고 제안한 방법이 차량번호판의 크기와 위치에 무관하고 잡음의 영향에 덜 민감하였을 뿐만 아니라 불규칙적인 외부환경에서도 인식율이 개선되었다. 또한 식별마크와 번호판 인식의 실시간 처리가 가능하여 실제 주차장이나 도시화도로등에 적용이 가능하다.

  • PDF