• Title/Summary/Keyword: Vehicle interior noise

Search Result 191, Processing Time 0.029 seconds

Research for High Sound Quality for a Passenger Car (승용차의 고급감 음질에 대한 연구)

  • Kim, Tae-Gyu;Kim, Sung-Jong;Lee, Sang-Kwon;Park, Dong-Chul;Lee, Kyung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1158-1166
    • /
    • 2009
  • Future luxury car must satisfy the improvement of the luxury sound quality on the vehicle interior noise. Previously, we have analyzed vehicle interior noise by dB(A) based analysis. However, dB(A) has very little to do with the psychological satisfaction of the consumers. People want a sound that is characteristic and refined not a sound that is quiet and common. Subjective test were conducted to determine the relationship between subject' s responses and calculated metric values. People choose the most luxury sound among the various vehicle interior noise. And the purpose of this study is that we understand the metrics which constitute the luxury vehicle sound. We have analyzed vehicle interior noise by using the statistical analysis such as multiple regression method and correlation method. And we organized the index of the luxury sound quality.

A Study on Noise Characteristics of High Speed Trains (고속차량 소음원 특성에 관한 연구)

  • Koh, Hyo-In;Kim, Jae-Chul;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.992-995
    • /
    • 2006
  • In this Paper the noise characteristics of KTX are analyzed in order to study the interior noise mechanism of KTX in slab tracks, which has become an issue since the commercial operating in 2004. The analysis of the interior noise of KTX in tunnel with concrete track shows sharply increased noise level in the range of 80Hz that is the natural frequency of the KIX carbody. The frequency characteristics of noise and acceleration levels of KTX in tunnels are compared to understand the interrelation between the noise inside the vehicle and outside the vehicle in the slat track tunnel. As a noise abatement method, the mud-flap was modified with intend to reduce the noise outside gangway and the interior noise inside the passenger compartment ultimately. The effect of this mud-flap modification on the interior noise is introduced and discussed.

  • PDF

An Application of the Statistical Energy Analysis for Absorbing and Soundproofing Materials of Vehicle (자동차용 흡.차음재의 성능분석을 위한 통계적 에너지 기법의 적용)

  • Lee, Chang-Myung;Lee, Jun;Kim, Dae-Gon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • Interior parts of a vehicle are getting important to reduce interior noise. Therefore, prior analysis of cabin noise related with interior parts are necessary at first design stage. Recently, Statistical Energy Analysis(SEA) has been suggested as a possible way for high frequency range noise analysis of interior parts. The validity of noise analysis with SEA to interior parts has been preyed by comparing with experimental result, and the developed method with SEA has been applied in finding optimized interior parts package.

Transfer Path Analysis of the Vehicle Interior Noise according to Excitation Existence or not (차량 가진원 유무에 따른 실내소음의 전달경로 분석에 대한 연구)

  • Park, Jong-Ho;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.365-370
    • /
    • 2011
  • Structure-bone noise is an important aspect to consider during the design and development of a vehicle. Reduction of structure-bone noise of the compartment in a vehicle is an important task in automotive engineering. Many methods which analyze transfer path of noise have been used for structure-bone noise. The existing method to measure of frequency response function of transfer path has been tested by removing a source. This Paper presents an experimental analysis about Transfer Path Analysis of the vehicle interior noise according to Excitation or not. To identify these points of difference, experiment were conducted through an experimental test using simulation vehicle.

  • PDF

The Source Identification of Noise Using Characteristics of Transmission and the Reduction of Interior Noise for Changing the Input Factor (전달특성을 이용한 소음원 규명과 입력요소 변경에 의한 실내소음 저감)

  • Lee, You-Yub
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1254-1261
    • /
    • 2007
  • The structure has several types of noise and booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To use this method effectively, the concept of Multi-dimensional-analysis and Experimental Design are introduced to identify the contributions of each vibration sources and transmission paths to interior noise. It was used 3inputs/1output system and found the magnitudes and phases of the forces for minimizing the noise. Finally, the synthesized interior booming noise level is predicted by the vector synthesis diagram. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

Transfer Path Identification of Road Noise;Using Multiple Coherence Function and Relative Acceleration (노면가진소음의 전달경로 파악;다중기여도함수 및 연결부위의 상대가속도 이용)

  • 김영기;배병국;김양한;김광준;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.84-92
    • /
    • 1997
  • Among the various sources of vehicle interior noise, this paper concerns the road induced noise ; the identification of its transfer path by using experimental method. Multiple input and single output model is taken as a noise generation model. Because it is impossible to measure the road imput forces directly, the acceleration signals are measured on four axle;three directions for each point. By considering the cross correlations of input signals, four uncorrelated source groups are taken. Multiple coherence function is employed to investigate the contribution of each group. In addtion, to identify the detailed path through the suspension systems, the contributions of all possible paths are ranked by using the coherence functions between interior noise and the relative accelerations of connections such as bushings and mountings. Measurements are performed with passenger vehicle traveling on concrete and asphalt roads at 60㎞/h.

  • PDF

A Study on the Vehicle Interior Noise for Tinning Randomization (타이닝 간격 변화에 따른 차량 실내소음 연구)

  • Yun, Dong-Hyok;Yo, Tae-Hwan;Jeong, Sun-Cheol;Cho, Yoon-Ho;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.770-773
    • /
    • 2006
  • In order to remove the whine noise which has high frequency spectrum related to the uniform tinning space in concrete pavements, randomization study of the tinning space has been done. One of the random tinning space proposed by the authors in the previous study has been applied to the certain region of tile Daegu-Pohang high way construction. In this study, the vehicle interior noise and vibration have been measured in the proposed random tinning road and compared with the data measured in the uniform tinning road. The results show that the magnitude of the peak spectrum is decreased by 18dB(A), and the overall noize level decreased by 4dB(A).

  • PDF

Excitation Force Analysis of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 가진력 해석)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.107-116
    • /
    • 2008
  • The excitation force of a powertrain is one of major sources for the interior noise of a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the power rain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using the experimental method for the reduction of vibration and noise. In order to solve this problem, the vibration of the power rain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts in a vehicle is investigated by using the experimental method based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a power rain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the power rain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.

Tire Cavity Noise Reducing Material Development (타이어 공명 소음 저감체 개발)

  • Lee, Sang-Ju;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

Interior noise of a KTX vehicle in a tunnel (터널주행시의 고속전철의 실내 소음)

  • Choi Sunghoon;Kim Jae-Chul;Lee Chan-Woo;Cho Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.670-674
    • /
    • 2004
  • High-speed trains with the maximum speed of 300 km/h have started revenue services since April 2004. A large portion of the 'Kyung- Bu' line is comprised of tunnels or bridges, which may cause excessive noise in a vehicle. The vibration generated by the trains propagates into the structure of the tunnel and the vehicle and it can be radiated as noise inside the vehicle interior. This noise can usually be heard as low frequency structure-borne noise. Measurement of the noise and vibration inside the KTX vehicle confirmed that the noise comprises of frequencies below 250 Hz with a couple of broad peaks.

  • PDF