• Title/Summary/Keyword: Vehicle emission reduction

Search Result 174, Processing Time 0.029 seconds

Improvement of Fuel Economy in a Diesel Engine by Application of Low Pressure EGR System (디젤 엔진의 연비 향상을 위한 저압 배기재순환 시스템의 적용에 관한 연구)

  • Kim, Yongrae;Lee, Yonggyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • LP(low pressure)-EGR system was investigated to evaluate its potential on fuel economy improvement and NOx emission reduction in a diesel engine. A diesel engine was tested for the evaluation of LP-EGR system at both of steady-state and transient test. For a transient test, control logic for LP-EGR valve operation was developed and a NEDC mode test was conducted by using a vehicle status simulation test. The steady-state results showed that LP-EGR system can reduce more NOx emission or fuel consumption comparing to the conventional HP(high pressure)-EGR. From the NEDC mode test, this LP-EGR system showed a possibility to improve fuel economy without a penalty of emissions.

Trend and policy directions of primary carbonaceous aerosols in Seoul (서울의 일차탄소성분 입자 농도 변화 및 관리 방향)

  • Eunlak Choi;Ji Yi Lee;Yong Pyo Kim
    • Particle and aerosol research
    • /
    • v.20 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • The concentrations of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in particulate matter, typical primary aerosols have decreased in Seoul between 2003 and 2018 (80% for PAHs and 85% for EC). The yearly mean benzo[a]pyrene (BaP) concentration has been lower than 1 ng/m3 since 2010-2011, the target value set by the European Union (EU) and China. A series of policies related to solid fuel and vehicle in South Korea and China should be effective in the reduction of the ambient PAHs and EC concentrations. But the emission data of PAHs and EC at both countries did not support that hypothesis. Possible causes are uncertainties in the emission inventories of primary carbonaceous aerosols in South Korea and China, although there may be a minor effect of the emissions from North Korea on the concentrations in Seoul. Thus the further policy directions against PAHs and EC such as improvements of emissions inventories and measurements, intensive regulation of non-road mobile sources and control of PAHs derivatives are discussed.

A Study on the Effect of Compression Ratio and EGR on the Partial Premixed Diesel Compressed Ignition Combustion Engine Applied with the Split Injection Method (2단 분사방식을 적용한 부분 예혼합 디젤압축착화연소엔진의 성능에 미치는 압축비 및 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kang, Woo;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-38
    • /
    • 2006
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogenous charge compression ignition(HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. In addition, this study confirmed the possibility of securing optimum fuel economy emission reduction in the IMEP 8bar range(which could not be achieved with existing partially premixed combustion) through forced charging, exhaust gas recirculation(EGR), compression ratio change and application of DOC catalyst.

EMC Compatability Analysis on Geostationary Satellite (정지궤도 인공위성의 전자파 호환성 해석)

  • Chae, Tae-Byeong;Oh, Seung-Hyeub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1207-1215
    • /
    • 2008
  • Satellite generates a complex electromagnetic noise by conducted and radiated coupling effect of the various electrical instruments. This noise may cause serious problems on the satellite system. To minimize the electromagnetic coupling effects and maintain the system safety margin, system noise reduction technique should be applied from the beginning of the system design. The COMS system is evaluated by measuring the conducted noise on system electrical power leads at PSR(Power Supply Regulator) and verifying a 6 dB system safety margin under the complex noise environment with current injection. The radiated noise due to the complex transmit antenna configuration is evaluated by integrating all unit-level RE measurement results, and the RF compatibility between spacecraft and launch vehicle is analyzed with the above estimations. This paper describes the COMS EMC compatibility analysis with respect to each unit level EMC test results, and RF compatibility analysis between spacecraft and launch vehicle. The analyzed results will be reflected on FM(Flight Model) EMC test.

A Study on Reduction of Energy and CO2 Emission by Using Regenerative Energy of Electric Vehicle (전동차 회생 에너지활용에 따른 에너지 및 CO2 절감 분석에 관한 연구)

  • Kim, Chul-Sub;An, Cheon-Heon;Lee, Byung-Song;Lee, Hi-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.85-96
    • /
    • 2010
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and $CO_2$ emissions shall be addressed as important issues in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. The efficient use of regenerated energy is considered to save energy. Namely, Using regenerative energy is that to store the energy generated during braking and discharge it again when a vehicle accelerates. Reusing energy stores and discharges energy, consequently enables a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. This paper analyzes effects of energy saving and $CO_2$-cut by using regenerative energy of electric vehicles.

Numerical Study on the Impact of Power Plants on Primary PM10 Concentrations in South Korea

  • Park, Il-Soo;Song, Chang-Keun;Park, Moon-Soo;Kim, Byung-Gon;Jang, Yu-Woon;Ha, Sang-Sub;Jang, Su-Hwan;Chung, Kyung-Won;Lee, Hyo-Jung;Lee, Uh-Jeong;Kim, Sang-Kyun;Kim, Cheol-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.255-273
    • /
    • 2018
  • To develop effective emission abatement strategies for eighteen coal-fired power plants located throughout Korea, power plant emission data and TAPM (The Air Pollution Model) were used to quantify the impact of emission reductions on primary $PM_{10}$ concentrations. TAPM was validated for two separate time periods: a high $PM_{10}$ concentration period from April 7 to 12, 2016, and a low $PM_{10}$ concentration period from June 1 to June 6 2016. The validated model was then used to analyze the impacts of five applicable power plant shut-down scenarios. The results showed that shut-down of four power plants located within the Seoul metropolitan area (SMA) would result in up to 18.9% reduction in maximum $PM_{10}$ concentrations, depending on synoptic conditions. A scenario for the shutdown of a single low stack height with highest-emission power plant located nearest to Seoul showed a small impact on averaged $PM_{10}$ concentrations (~1%) and 4.4% ($0.54{\mu}g/m^3$) decrease in maximum concentration. The scenario for four shutdowns for power plants aged more than 30 years within SMA also showed a highest improvement of 6.4% ($0.26{\mu}g/m^3$ in April) in averaged $PM_{10}$ concentrations, and of 18.9% ($2.33{\mu}g/m^3$ in June) in maximum concentration, showing almost linear relationship in and around SMA. Reducing gaseous air pollutant emissions was also found to be significant in controlling high $PM_{10}$ concentrations, indicating the effectiveness of coreduction of power plant emissions together with diesel vehicle emissions in the SMA. In addition, this study is implying that secondary production process generating $PM_{10}$ pollution may be a significant process throughout most regions in Korea, and therefore concurrent abatement of both gas and particle emissions will result in more pronounced improvements in air quality over the urban cities in South Korea.

A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist (합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Young-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

The Development of Lean-Burn Eng. (린-번 엔진 개발)

  • Lee, Tae-Pyo;Yim, Kook-Hyun;Kim, Jong-Boo;Kim, Min-Hyung;Ah, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.1005-1008
    • /
    • 1999
  • HMC has developed the lean burn system with alpha 4-valve into domestic market in the end of 1997. In a viewpoint of saving energy and prevention of global warming (CO2 reduction), the lean burn system has recently attracted a considerable attentions in gasoline engines. There has been, however, difficulty in extending LML(Lean Misfire Limit) enough to meet the emission regulations and satisfaction of driveability. In this paper some descriptions will be given upon the new technology of lean bum engine which will be installed in Accent, especially the improvement of the combustion, the development of engine management system such as intake system and wide range air fuel control strategy, and the result of vehicle test.

  • PDF

Low Carbon operation study through comparing GHG contribution of each stages of railway vehicle (철도차량 전과정 단계별 온실가스 발생량 비교를 통한 저탄소 운영방안 연구)

  • Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.183-186
    • /
    • 2010
  • Advanced Railway countries are developing technologies of production and management for low-carbon and green growth of their railway industry to hold a dominant position under post-Tokyo protocol regime through integrated approach which uses environmental quantitative analysis of train life cycle by using LCA(Life Cycle Assessment). On the contrary, Korea railroad industry attempts to make an environmental improvement only for using regenerative energy and improvement in operating energy consumption through adapting reduction weight of material technology and etc. without systematic environmental analysis approaches such as comparing and analyzing energy consumption as well as GHG emission in each life cycle stages of train. Therefore, In this paper, low-carbon management and comprehensive environmental improvement for sustainable development of Korea railway industry through analyzing the result of life cycle analysis in abroad are suggested.

  • PDF

A Study on the Reduction Effectiveness of Vehicle Emission by Biodiesel Fuel (바이오디젤 사용에따른 오염물질 개선효과 연구)

  • 류정호;엄명도;김종춘;이태우;김선문;김기호;정충섭
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.181-182
    • /
    • 2003
  • 경유엔진은 가솔린엔진에 비해 연소특성상 연료소비효율이 우수하여 온실가스인 $CO_2$ 배출이 적은 반면 대기 및 인체위해성이 높은 NOx와 입자상물질(PM)의 배출이 많아 대기저감을 위한 연료의 고압분사, 전자제어식 EGR기술등 엔진개량기술과 매연여과장치, De-NOx등 후처리기술 그리고 대체연료사용 기술등 다양한 저감대책이 전세계적으로 강구되고 있다. 특히 경유엔진에서 배출되는 오염물질로 인한 대기오염영향은 점차 증가하고 있어 대체연료사용 및 배출허용기준강화둥 우리 실정에 적합한 효율적인 대기저감대책이 강구되어야 할 것이다. (중략)

  • PDF