• Title/Summary/Keyword: Vehicle driving condition

Search Result 278, Processing Time 0.025 seconds

A driving performance prediction of the vehicle mounted with automatic transmission at idle start (공회전 출발시 자동변속기탑재 차량의 구동성능예측)

  • 김태진;정순배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1063-1066
    • /
    • 1996
  • On the prediction of driving performance, an acceleration performance is normally simulated in stall starting condition which is the engine status of full-throttle and high-speed. The lack of transient engine torque data makes the difficulty of predicting an acceleration performance on engine-idle start condition. A experimental equation of transient engine torque is derived from vehicle performance test data. It is applied to simulation the accleration performance prediction on idle starting condition.

  • PDF

A Study on the Analysis of Emission Characteristics for Light-duty Diesel Vehicle According to the Severity of the Test Route (주행 경로의 가혹도에 따른 소형 경유 자동차의 배출 특성 분석에 관한 연구)

  • Sangki Oh;Youngjae Jeon;Junepyo Cha
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • The EU (European Union) was introduced Euro-6e in 2023. Recently, the EU prepare to introduce Euro-7. One of difference Euro-6e and Euro-7 is test route condition. This study developed 5 test routes that have different characteristics and severity. The severity of test routes was made by traffic and road gradient. And this study was conducted RDE test on 5 test routes for Light-Duty diesel vehicle (Euro-6d). Based on the test results, the emission characteristics of CO2 and NOx were analyzed according to the severity of the test routes. Especially, 4 test routes were satisfied normal driving condition of Euro-7 and other test route was satisfied extended driving condition of Euro-7.

Design of bogie frames for Maglev (자기부상열차용 대차 프레임의 설계)

  • 이재익;김국진
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.845-850
    • /
    • 2002
  • Maglev is the vehicle which can run in levitated condition by the electro-magnets, and the vehicle can run without any contact condition. The vehicle is devided in two parts such as carbody and bogies, and the bogies are the driving device of the vehicle. There are many equipments in the bogie, and the frame endure many loads occurred in the operation of the vehicle. The bogie frame is designed and manufactured in the view of good safety and maintainability, and the engineers work to accomplish this purpose.

  • PDF

The Road condition-based Braking Strength Calculation System for a fully autonomous driving vehicle (완전 자율주행을 위한 도로 상태 기반 제동 강도 계산 시스템)

  • Son, Su-Rak;Jeong, Yi-Na
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • After the 3rd level autonomous driving vehicle, the 4th and 5th level of autonomous driving technology is trying to maintain the optimal condition of the passengers as well as the perfect driving of the vehicle. However current autonomous driving technology is too dependent on visual information such as LiDAR and front camera, so it is difficult to fully autonomously drive on roads other than designated roads. Therefore this paper proposes a Braking Strength Calculation System (BSCS), in which a vehicle classifies road conditions using data other than visual information and calculates optimal braking strength according to road conditions and driving conditions. The BSCS consists of RCDM (Road Condition Definition Module), which classifies road conditions based on KNN algorithm, and BSCM (Braking Strength Calculation Module), which calculates optimal braking strength while driving based on current driving conditions and road conditions. As a result of the experiment in this paper, it was possible to find the most suitable number of Ks for the KNN algorithm, and it was proved that the RCDM proposed in this paper is more accurate than the unsupervised K-means algorithm. By using not only visual information but also vibration data applied to the suspension, the BSCS of the paper can make the braking of autonomous vehicles smoother in various environments where visual information is limited.

Analysis About How Human Foot Move During Driving Condition (중형승용차 운전 중 발거동 분석)

  • Park, Bo-Hyun;Jung, Hee-Seok;Lee, Sung-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.41-45
    • /
    • 2012
  • Until now, most studies of foot moving or driving posture have been performed under laboratory driving conditions. But there are many different things between actual driving conditions and laboratory driving conditions because, in laboratory conditions, it is hard to consider vehicle's noise, vibration and people's psychology state while driving. Thus this study is performed through actual driving conditions. And while driving test, we recorded driver's foots with 2 cameras to investigate foots(left and right) heel point and how human foots move to control the three pedals : accel, brake and footrest.. Through driving test, the results of this study show that the position of driver's heel point isn't related to stature and tends to be generalized.

Platform Design of Caterpillar Typed Electrical Vehicle (궤도형 전기 차량의 플랫폼 설계)

  • Lee, Yong-Jun;Chang, Young-Hak;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a platform design of caterpillar typed electrical vehicle is proposed. Nowadays, there have been many researches on mobile robots in the various ways. Many different fields such as military, exploration, agricultural assistance and disaster relief have applied the mobile robot. Design condition of stable angle, upset angle is reflect to caterpillar typed electrical vehicle. To experiment, developed a caterpillar typed electrical vehicle and design a driving controller. Developed caterpillar typed electrical vehicle is tested about operating and driving. Test environment is consisted of driving on flatland and climbing 15 degree and outdoor 40 degree slope. It is confirmed that developed tracked electric vehicular robot can driving and climbing.

A Study on Principles for Safe Driving of the Urban Railway Train (도시철도 열차의 안전 운전원칙에 관한 연구)

  • Jeon, Young-Seok;Ahn, Seung-Ho;Chung, Kwang-Woo;Kim, Jae-Moon;Kim, Chul-Su;Chung, Jong-Duk;Jeong, Rag-Gyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.628-635
    • /
    • 2009
  • To assure the safety of urban railway train, it is necessary to observe the specified driving principles under an essential condition during running on tracks. These principles arises from a great deal of experience for a long time and include safe distance between trains, the railway signaling, block system, regular block of the highest priority and driving prohibition of simple railway vehicle in the main track, etc. Therefore, it is important to apply these principles to domestic urban railway driving regulations and railway vehicle driving regulations. However, domestic urban railway administrator established his own operation rules within the regulation. In this study, domestic urban railway administration's own rules are examined and the appropriate driving regulation on the safe driving principles is proposed.

  • PDF

Differences in Driver's Longitudinal Vehicle Control, Subjective Fatigue, and Perceived Fidelity in 2D and 3D Display Driving Simulation (2D와 3D 디스플레이로 구현된 운전 시뮬레이션에서 운전자의 종적 차량통제 수행, 주관적 피로감 및 지각된 현실감의 차이)

  • Park, Dong-Jin;Lee, Jaesik
    • Science of Emotion and Sensibility
    • /
    • v.17 no.4
    • /
    • pp.3-18
    • /
    • 2014
  • In this study, drivers' longitudinal car control, subjective fatigue, and perceived fidelity were compared between 2D and 3D display driving simulation. The results can be summarized as followings. First, in all target speed conditions, the drivers tended to drove faster in 2D display condition than 3D display condition. Second, speed deviation from target speed increased as target speed decreased. Third, distances between the lead vehicle and the driver's vehicle were significantly reduced in the 3D display condition when the speeds of the lead vehicle were relatively fast(i. e., over 80km/h). Fourth, although the perceived fidelity was not significantly different between the two display conditions, subjective fatigue was higher in the 3D display condition than in the 2D display condition.

Fuzzy Logic Speed Control Stability Improvement of Lightweight Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail.K;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2010
  • To be satisfied with complex load condition of electric vehicle, fuzzy logic control (FLC) is applied to improve speed response and system robust performance of induction traction machine based on indirect rotor field orientation control. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels of lightweight electric vehicle by means the vehicle used for passenger transportation. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. Our electric vehicle fuzzy inference system control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too.

Measurement and Analysis about Behavior of Steel Plate Girder in Vicinity of Support, According to Driving Condition (주행조건에 따른 판형교 지점부 거동 측정 분석)

  • Lee, Syeung-Youl;Kim, Nam-Hong;Woo, Byoung-Koo;Na, Kang-Woon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.690-696
    • /
    • 2011
  • A number of conventional railway bridge is more than 2600. Non-ballast plate girder bridge is about 700 and this is 27% of all bridge numbers. Non-ballast plate girder has advantages that self load is more lighter than moving load and construction cost is more inexpensive than concrete bridge. But non-ballast plate girder has disadvantages that vibration and noise is bigger than concrete bridge. This study had analyzed behavior of non-ballast plate girder according to the arrangement of supports and driving conditions to review the proper arrangement of support. Measurements were performed in single line and disel locomotive of 7400type were used as test vehicle. The vehicle's driving conditions are as follows; Change of driving direction, Constant speed driving, Deceleration driving, Acceleration driving. Main measurement contents were horizontal displacement and vertical vibration acceleration in girder of vicinity support. Results of measurement are as follows; In case that a vehicle drives from fixed support to movable support, vertical vibration acceleration of the girder was smaller than opposition case.

  • PDF