• Title/Summary/Keyword: Vehicle crash test

Search Result 157, Processing Time 0.025 seconds

Study on FWDB Frontal Vehicle Crash Test (FWDB 정면충돌시험에 대한 연구)

  • Kim, Joseph;Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In proportion to increasing interest in vehicle safety, many country have regulated vehicle safety and performed NCAP(New Car Assessment Program). However vehicles which had good results in these compliance and NCAP frontal crash test have caused problems such as the fork effect and over-riding in real car-to-car accidents. To complement these issues, new frontal crash test modes using new barrier like FWDB and PDB have been developed by EEVC WG15. In this paper, FWDB frontal crash test was performed and the result was compared with the full frontal crash test using the rigid wall in order to comprehend the characteristic of FWDB. The results of FWDB test were compared with one of USNCAP and KNCAP. Using USNCAP data, vehicle performance like deformation and wall force were studied. A comparative study of dummy injuries was made by using KNCAP result. The results showed that vehicle performance of FWDB test like displacement and effective acceleration was similar in spite of absorbing energy of FWDB due to the greater vehicle deformation of rigid wall test. In FWDB test, driver dummy head bottomed out but most of injuries were superior to the injury of rigid wall test.

A Study on the Comparison for the Child Occupant Safety from Frontal Crash Test Protocol (정면충돌 시험방법에 따른 어린이 탑승객 충돌안전성 비교연구)

  • Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.33-38
    • /
    • 2016
  • Recently, development in vehicle safety could increase interest in children's safety in vehicle collisions. But the research of children safety in vehicle collisions is not being conducted as many as that of adult's. Especially the study for the vehicle crash was not much. This study focused on the comparison of child safety between test protocols to evaluate children's safety in crash test. Injuries of Q6 and Q10 dummy were evaluated using FFRB (Full frontal rigid barrier) test and 40% ODB (Offset deformable barrier) test with one model vehicle. Even though the limit number of test, the tendency of injury criteria of Q6 and Q10 dummy between the test protocols was not conformed but injury criteria of Q6 and Q10 were not same between FFRB and 40% ODB.

Development of Non-Redirective Crash Cushion for Bridge Piers Considering Occupant Safety (탑승자 안전도를 고려한 교각 방호시설물 개발에 관한 연구)

  • Park, Jaehong;Sung, Jung Gon;Nam, Min Gyun;Yun, Duk Geun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.120-126
    • /
    • 2018
  • The traffic accident types are largely classified into vehicle to vehicle accident, vehicle-to-person accident and single-vehicle. Especially, the single-vehicle accident types are severe when the vehicle crashed into road facilities such as bridge, piers, utility poles. The severity of single-vehicle accidents are ten times higher than that of all other accidents types. It is needed to consider to reduce accident severity. This study was conducted to develop crash worthy safety design facility to ensure the vehicle occupant safety. The simulation and the crash tests were conducted for assessment of the safety performance to check the criteria of CC2(Crash Cushion 2) level. THIV(Theoretical Head Impact Velocity) and PHD(Post-impact Head Deceleration) were used to assess occupant impact severity for crashes. The non-redirection collision test conditions for 900 kg and 1,300 kg-head on crash tests, 900 kg-1/4 offset crash tests, 1,300 kg-head on crash test with $15^{\circ}$angle were conducted. The simulation and experiment test result showed that THIV values were below 44 km/h criterion, PHD values were below the 20G. The development non-redirective crash cushion is expected to be used for the fixed object such as bridge piers for assuring occupant safety.

A Study on Vehicle Crash Characteristics with RCAR Crash Test in Compliance with the New Test Condition (동일 승용차량에 대한 RCAR 신.구 충돌시험을 통한 차체 충돌특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.190-194
    • /
    • 2006
  • This research investigates vehicle structure acceleration and vehicle deformation with RCAR crash test. To investigate vehicle damage characteristics in an individual case, it is possible to RCAR low speed crash test. In this study, two tests were conducted to evaluate difference between RCAR new condition and RCAR old condition. A two large vehicles were subjected to a frontal crash test at a speed of 15km/h with an offset of 40% $10^{\circ}$ angle barrier and flat barrier. The results of the 15km/h with an offset of 40% $10^{\circ}$ angle barrier revealed high acceleration value on the vehicle structure and high repair cost compared to the RCAR 15km/h with an offset of 40% flat barrier. So in order to improve damage characteristics in low speed crash of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm.

Research on Vehicle Crash Compatibility Through Car to Car Frontal Crash Test (차 대 차 정면충돌시험을 통한 상호안전성 연구)

  • Park, In-Song;Kim, Guan-Hee;Hong, Seung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Since 2000, sports utility vehicles(SUVs) occupy about 40% of domestic vehicle sales. As sports utility vehicle sales are increased the probability of crash accident between SUVs and passenger vehicles increases. Generally, SUVs are heavier than passenger vehicles and their drive height and front end stillness are higher than passenger vehicles. Because of these characteristics SUVs cause more severe injury and fatal injury in SUV to passenger vehicle head-on impact. To evaluate SUV's aggessivity to passenger vehicle, we carried out SUV to passenger vehicle head-on crash test. And finally the way how to reduce incompatibility between SUVs and passenger vehicles is suggested.

A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility (상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구)

  • Lee, Chang min;Shin, Jang ho;Kim, Hyun woo;Park, Kun ho;Park, Young joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

Transforming Test Data of an Impact to a Crash Cushion into the Data of Different Impact Condition (충격흡수시설에 대한 특정 충돌시험데이터의 확대해석)

  • Jang, Dae Young;Ko, Man Gi;Joo, Jae Woong;Kim, Dong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.197-206
    • /
    • 2012
  • It is found the first case of broad interpretation of the crash analysis in MASH (Manual for Assessing Safety Hardware, AASHTO, 2009) which is the guideline of roadside safety features in United States. They introduced the procedure of calculating 1,500 kg sedan safety index from the 2,270 kg pick-up truck crash test for crash cushion. First, following MASH's method, calculate 0.9 ton vehicle crash data and safety index using 1.3 ton vehicle crash test data and compare with actual 0.9 ton vehicle crash test data. results show that actual test data and the data calculated by MASH's method have great difference. Second, analyse the cause and develop new method. Proposed method can estimate not only the lighter vehicle (0.9 ton) crash data from the heavier vehicle (1.3 ton) crash test but also heavier vehicle (1.3 ton) data from lighter vehicle (0.9 ton) test. This method is superior to MASH's method and has stronger theoretical foundation. This paper proves the efficiency and the accuracy of new broad interpretation method using crash test data and investigates the principle.

A study on development of the pole side impact sled test using WorldSID (WorldSID를 이용한 기둥측면 충돌 슬레드 시험 개발 방법 연구)

  • Oh, Hyungjooon;Kim, Seungki;Lim, Kyungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • The pole side crash caused fatal injury by comparison with other crash impact mode such as frontal and rear crash. EuroNCAP proposed the pole side crash test using WorldSID(World Side Impact Dummy). The objective of this study is to develop the pole side impact sled test using dummy rib deflection between crash and sled test. In the pursuit of this purpose, we fabricated new pole side sled buck and test preliminary pole sled using ES-2re. Through this, we found the sled acceleration pulse scale. Hardness and thickness of the EPP affects the rib deflection. We conducted the pole sled test using WorldSID based on the preliminary results. As a result, rib deflection was shown to correlate well between crash test and pole side sled test.

A Parametric Study of Crash Scenario of Autonomous Vehicle and Database Construction (자율주행차 충돌시나리오 파라미터 분석과 차대차 충돌해석 DB 구성)

  • Young Myoung So;Ho Kim;Junsuk Bae
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2023
  • Research on the safety of autonomous vehicle is being conducted in various countries, including the European Union, and computer simulation techniques so called 'Virtual Tool Chain' are mainly used. As part of the crash safety study of autonomous vehicle, 25 car to car collision scenarios were provided as a result of a real accident-based accident reproduction analysis study conducted by a domestic research institution, and a vehicle crash analysis was performed using the FE car to car model of the Honda Accord. In order to analyze the results of the car to car simulation and to construct a database, major crash parameters were selected as impact speed, angle, location, and overlap, and a method of defining them in an indexed form was presented. In order to compare the crash severity of each scenario, a value obtained by integrating the resultant acceleration measured by the ACU of the vehicle was applied. The equivalent collision test mode was derived by comparing the crash severity of the regulation test mode, 30 deg rigid barrier mode, in the same way.

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.