• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,007, Processing Time 0.037 seconds

Study on Concurrent Simulation Technique of EPS and A Full Car Model (EPS와 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bong-Choon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.785-787
    • /
    • 2010
  • It is well known that most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the Electric Power System(EPS) or Motor Driven Power System(MDPS) has widely equipped in passenger vehicles. In this research the concurrent simulation technique for an EPS system with MATLAB/SIMULINK and a full vehicle model has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for SUV. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

  • PDF

A Study on the Modelling and Control Method of an Anti - lock Brake System

  • Ki, Lim-Chul;Hoon, Song-Jeong;Suck, Boo-Kwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.112-112
    • /
    • 2001
  • An Anti-lock Brake System ABS is developed to increase the stability of vehicle and to reduce the stopping distance when braking manoeuvres by measuring the wheel and vehicle speed. An ABS mathematical model which describes the dynamics of vehicle and calculate the stopping distance, is explained in this paper. To proceed this study, a mathematical model is produced with simulink software package. Although the model considered here is relatively simple, it retains the essential dynamics of the system. The results are evaluated at the various driving or road conditions. The results from mathematical model show that ABS reduces the stopping distance at the various road conditions. This mathematical model could be ...

  • PDF

A Path Generation Algorithm of an Automatic Guided Vehicle Using Sensor Scanning Method

  • Park, Tong-Jin;Ahn, Jung-Woo;Han, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • In this paper, a path generation algorithm that uses sensor scannings is described. A scanning algorithm for recognizing the ambient environment of the Automatic Guided Vehicle (AGV) that uses the information from the sensor platform is proposed. An algorithm for computing the real path and obstacle length is developed by using a scanning method that controls rotating of the sensors on the platform. The AGV can recognize the given path by adopting this algorithm. As the AGV with two-wheel drive constitute a nonholonomic system, a linearized kinematic model is applied to the AGV motor control. An optimal controller is designed for tracking the reference path which is generated by recognizing the path pattern. Based on experimental results, the proposed algorithm that uses scanning with a sensor platform employing only a small number of sensors and a low cost controller for the AGV is shown to be adequate for path generation.

Vibration Transmission of Railway Floor Structure due to Connecting Materials (연결재료에 따른 철도차량 바닥구조의 진동전달)

  • Shin, Bum-Sik;Chun, Kwang-Wook;Choi, Yeon-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1320-1325
    • /
    • 2009
  • The sources of the vibration of railway vehicles in the cabin are usually bogie, axle, and wheel. The vibrations are transmitted through the floor structures of railway vehicle. The floor structure is the combination of bottom plate, plywood, and rubber. In this research the vibration transmission is measured experimentally and analyzed numerically to find the transmission characteristics of the vehicle floor structures. The result shows that the vibration characteristic of soft rubber is better than hard rubber or wood as the connecting material between the bottom plate and the plywood.

Fatigue strength evaluation of a bogie frame for standard electric multiple unit(I). (표준전동차 대차틀 피로강도평가(I))

  • 박기준;이호용;이관섭;김원경
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • Nowadays, the vehicle structure weight of urban transit system has been reduced in order to save energy and materials. However, this light weighted vehicle structure is very important to verify the fatigue strength at the development stage. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these components, the bogie frame is most significant component subjected to the whole vehicle and passenger loads. In this study, the bogie frame for the standard EMU power car is evaluated to the static and fatigue strength. And, the evaluation method is used the JIS E4207 specification throughout the FEM analysis and static load test. The static and fatigue test results for the standard EMU bogie frame of power car has been appeared very safety and stable for the design load conditions.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

Development of Dynamic Modeling and Control Algorithm for Lateral Vibration HILS of Railway Vehicle (철도 차량 횡진동 HILS 를 위한 동적 모델링 및 제어 알고리즘 개발)

  • Lee, Jae-Ha;Kwak, Moon-K.;Yang, Dong-Ho;You, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.713-719
    • /
    • 2012
  • This paper is concerned with the dynamic modeling for the hardware-in-the-loop simulation of lateral vibrations of a railway vehicle. The resulting dynamic model is a nine degree-of-freedom model which can describe the lateral, roll and yaw motions of the car body and two bogies. It is assumed that the external disturbances come from wheel motions. In order to test the efficacy of the model, the linear quadratic regulator and the sky-hook control algorithm were designed and applied to the model. The simulation results show that both control algorithms are effective in suppressing the vibrations of railway vehicles.

  • PDF

Development of Dynamic Modeling and Control Algorithm for Lateral Vibration HILS of Railway Vehicle (철도 차량 횡진동 HILS를 위한 동적 모델링 및 제어 알고리즘 개발)

  • Lee, Jae-Ha;Kwak, Moon-K.;Yang, Dong-Ho;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.634-641
    • /
    • 2012
  • This paper is concerned with the dynamic modeling for the hardware-in-the-loop simulation of lateral vibrations of a railway vehicle. The resulting dynamic model is a nine degree-of-freedom model which can describe the lateral, roll and yaw motions of the car body and two bogies. It is assumed that the external disturbances come from wheel motions. In order to test the efficacy of the model, the linear quadratic regulator and the sky-hook control algorithm were designed and applied to the model. The simulation results show that both control algorithms are effective in suppressing the vibrations of railway vehicles.

Comparative Study on Power Control Strategies for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차에 대한 에너지 운용전략의 비교 연구)

  • Ki, Young-Hun;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.198-200
    • /
    • 2006
  • In this paper, three types of power control strategies for controlling a Fuel Cell Hybrid Electric Vehicle(FCHEV) are studied in view of fuel economy. The FCHEV has become one of alternatives for future vehicles since it does emit water only without any exhaust gas while it has a high well-to-wheel efficiency together with an energy saving due to regenerative braking. However, it has also several disadvantages such as the complexity of vehicle system, the increased weight and the extra battery cost. Among various power control strategies, a static power control strategy, a power assist control strategy and a fuzzy logic-based power control strategy are simulated and compared to show the effectiveness of each method.

  • PDF

Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control (브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발)

  • Youn, Weon-Young;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF