• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.021 seconds

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.

The Technique of Satellite Tracking and Beam Forming for Mobile TT&C (이동형 위성 관제를 위한 위성 위치 파악 및 빔 성형 기법)

  • Lee, Yun-Soo;Chinn, Yong-Ohk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1359-1369
    • /
    • 2007
  • This paper describes the technique of satellite direction finding and main beam steering of the adaptive array antenna system which is used for mobile TT&C(Tracking Telemetry&Command) system. To be able to control the satellite on mobile vehicle while moving, the relative directional information of the satellite to the mobile vehicle is necessary to make main beam to the direction of satellite. To do this MUSIC, which is one of the super-resolution algorithm of wave direction finding, is used and then the performance analysis and quantization problem of phase shifter are addressed. This paper is valuable in the respect of showing feasibility of designing the moble TT&C using adative array antenna system.

Slip Detection and Control Algorithm to Improve Path Tracking Performance of Four-Wheel Independently Actuated Farming Platform (4륜 독립구동형 농업용 플랫폼의 주행 궤적 추종 성능 향상을 위한 휠 슬립 검출 및 보상제어 알고리즘 연구)

  • Kim, Bongsang;Cho, Sungwoo;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel's motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform's target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.

Development of autonomous system using magnetic position meter (자기거리계를 이용한 자율주행시스템의 개발)

  • Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • Development of autonomous vehicle system that use magnetic position meter research of intelligence transportation system is progressed worldwide active by fast increase of vehicles. Among them, research about autonomous of vehicles occupies field. And autonomous of vehicles is element that path recognition is basic. Existent magnetic base autonomous system analyzes three-dimensional data of magnet marker to 3 axises magnetic sensor and recognized route. But because using Magnetic Wire and Magnetic Position Meter in treatise that see, measure side lateral error and propose system that driving. And system that compare with system of autonomous vehicles and propose wishes to verify by hardware of that specification and simple algorithm through an experiment that autonomous is available.

An AGV Driving Control using immune Algorithm Adaptive Controller (면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, Yeong-Jin;Lee, Gwon-Sun;Lee, Jang-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.201-212
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the cast that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform (개방형 제어 플랫폼 기반 호버링형 무인잠수정 테스트베드 설계 및 성능평가)

  • Choi, Jae-Weon;Ha, Tae-Kyu;Binugroho, Eko Henfri;Yu, Chang-Ho;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.489-497
    • /
    • 2010
  • This paper presents the design of hardware platform, which is a test bed for the navigation system and hovering type AUV (Autonomous Underwater Vehicle) under the OCP (Open Control Platform). The developed AUV test bed consists of two hulls, four thrusters, and the navigation system which uses a SBC2440II with IMU (Inertial Measurement Unit). And the SMC (Sliding Mode Control) is chosen for the diving and steering control of the AUV. This paper uses ACE/TAO RTEC (Real-Time Event Channel) as a middleware platform in order to control and communicate in the developed AUV test bed. In this paper, two computers are used and each of them is dedicated for the specific purpose, the first computer is used as the SMC module and the middleware platform for the ACE/TAO RTEC and the second computer is used for the sensor controller. We analyze the performance of the AUV test bed under the OCP.

System Mode and Sensitivity Analysis for Brake Judder Reduction (브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석)

  • Hwang In-Jin;Park Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

A Study of the Control System on the Manta-type UUV (만타형 UUV의 제어기 설계에 관한 연구)

  • Kim, Hyeong-Dong;Kim, Joon-Young;Kim, Si-Hong;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.359-363
    • /
    • 2011
  • In this paper, automatic control system for the Manta UUV are constructed for the diving and steering maneuver. PID controller and Fuzzy controller are adopted in this system. Based on the 6DOF dynamic equation, simulation program has been developed using the Matlab. Using this program, depth control system and heading control system with tidal current are evaluated.

A Study on Implementation of Immune Algorithm Adaptive Controller for AGV Driving Control (AGV의 주행 제어를 위한 면역 알고리즘 적응 제어기 실현에 관한 연구)

  • 이영진;이진우;손주한;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.187-197
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.

  • PDF

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.