• Title/Summary/Keyword: Vehicle Performance Curve

Search Result 84, Processing Time 0.028 seconds

Simultaneous Optimization of Vehicle Suspensions for the Improvement of Frequency-weighted Riding Comfort (주파수 가중치를 고려한 승차감의 향상을 위한 차량 현가장치의 동시최적화)

  • 김창동;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 1995
  • This paper presents the simultaneous optimal design of structure and LQG control systems for the improvement of riding comforts of active vehicle suspension systems. The performance index of riding comforts is extended to include frequency-weighted acceleration in the quadratic cost functional. Janeway human response curve with respect to acceleration is used to verify the usefulness of the presented method. The method is applied to a half model of an active vehicle suspension systems with elastic body moving on randomly profiled road. The values of stiffness of suspensions are used for the structural design variables. The conjugate gradient method is used for optimization. The simulated results of simultaneous optimization with frequency-weighted cost functional are compared with those without frequency- weighted cost functional.

  • PDF

Dynamic Analysis of a Bogie Tilting Mechanism (대차 틸팅 기구의 동적 해석)

  • 구동회;김남포;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed curve negotiation without any modification of infrastructure. In order to achieve the optimal car-body position control through the tilting mechanism, a dynamics analysis was required after the kinematics analysis of the tilting mechanism. For this, the geometric relationship of the linkage-type tilting mechanism was defined. Then, the equations of motion for the half car-body were derived. With the derived equations, the effect of the parameter change on performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational conditions in which the tilting vehicle is applied.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.

Fine Particle Removal by a Vehicle Air Cleaner (차량용 에어클리너의 미세입자 제거특성)

  • Park, Byung-Hyun;Kim, Sang-Bum;Kim, Gyung-Soo;Lee, Sang-Ryul;Lee, Myong-Hwa
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • There is a growing interest to develop an eco-friendly air cleaner with high performance through a remanufacturing process. Two kinds of polyurethane filter media, a coarse (Filter-A) and a fine filter media (Filer-B), are used in this study to protect a vehicle engine from airborne particles. In order to improve the collection performance of the filters (Filter-A, Filter-B), an oil coating technology on the filter surface was introduced. As a result, inertial force is a dominant collection mechanism for a dry filter media, so that collection efficiency increases with increasing filtration velocity. However, intra-structure change of an oil-coated filter media influences on the collection mechanism, which shows a non-linear collection efficiency curve in terms of filtration velocity. The result shows that the developed filter media are eco-friendly and effective to protect a vehicle engine from airborne particles especially at low filtration velocity.

  • PDF

A Study on the Design Process of Steering System considering Frequency and Sensitivity (주파수와 감도를 고려한 스티어링 시스템 설계 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.208-211
    • /
    • 2005
  • This paper describes the development process of steering system for reduce idle vibration through the data level of frequency and sensitivity. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between NVH performance and fuel economy. The target frequency of the steering system is set by benchmarking of a competitive vehicle and the vibration mode map is used to separate steering column modes from resonance of body structure and engine idle rpm. This paper descirbes the analysis approach process for high stiffness of steering system and the design guideline is suggested about steering column and support system by using mother car at initial design stage. We used a patent map in order to analyze accurately a technical trend and suggested the design process using dynamic damper of steering system considering sensitivity. And we established techniques of analysis on steering system and evaluated the level of accuracy of analysis through correlating the test and analysis results. It makes possible to design the good NVH performance vehicle at initial design stage and save vehicles to be used in tests. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

A PERFORMANCE IMPROVEMENT OF ANEL SCHEME THROUGH MESSAGE MAPPING AND ELLIPTIC CURVE CRYPTOGRAPHY

  • Benyamina Ahmed;Benyamina Zakarya
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The vehicular ad hoc network (VANET) is currently an important approach to improve personal safety and driving comfort. ANEL is a MAC-based authentication scheme that offers all the advantages of MAC-based authentication schemes and overcomes all their limitations at the same time. In addition, the given scheme, ANEL, can achieve the security objectives such as authentication, privacy preservation, non-repudiation, etc. In addition, our scheme provides effective bio-password login, system key update, bio-password update, and other security services. Additionally, in the proposed scheme, the Trusted Authority (TA) can disclose the source driver and vehicle of each malicious message. The heavy traffic congestion increases the number of messages transmitted, some of which need to be secretly transmitted between vehicles. Therefore, ANEL requires lightweight mechanisms to overcome security challenges. To ensure security in our ANEL scheme we can use cryptographic techniques such as elliptic curve technique, session key technique, shared key technique and message authentication code technique. This article proposes a new efficient and light authentication scheme (ANEL) which consists in the protection of texts transmitted between vehicles in order not to allow a third party to know the context of the information. A detail of the mapping from text passing to elliptic curve cryptography (ECC) to the inverse mapping operation is covered in detail. Finally, an example of application of the proposed steps with an illustration

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

A Study on Analysis Technique for Solenoid Valve Applicable to Military Vehicle Transmission (군용차량 변속기에 적용할 수 있는 솔레노이드밸브 해석기술에 관한 연구)

  • Choi, Yun-Yong;Hong, Jung-Pyo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.29-34
    • /
    • 2015
  • Electronic of military vehicle that had relied on pure machinery system is ongoing. A large part of electronic of small-sized military vehicle has been already commercialized, which will expand to large-sized military vehicle field. Design of solenoid valve for automatic transmission is significantly important for stable driving performance of military vehicle. This research aims to develop simulation method which is capable of predicting performance of solenoid valve quantitatively according to its variation of ATF temperature. The research has been conducted in line with Maxwell, a magnetic field analysis program, and AMESim, a hydraulic analysis program. After simulation, it turned out to have been very similar to the test result in temperature range which excludes high temperature (over $120^{\circ}C$) and extremely low temperature (below $-20^{\circ}C$).

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load (차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발)

  • Kim, Jang-Ho Jay;Yi, Na-Hyun;Phan, Duc-Hung;Kim, Sung-Bae;Lee, Kang-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2010
  • Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.