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ABSTRACT

In this paper, we present multi-sensor data fusion for telematics application. Suc-
cessful telematics can be realized through the integration of navigation and spatial
information. The well-determined acquisition of vehicle’s position plays a vital role
in application service. The development of GPS is used to provide the navigation data,
but the performance is limited in areas where poor satellite visibility environment ex-
ists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS
(Global Positioning System), and DMI (Distance Measurement Indicator) is required
to provide the vehicle’s position to service provider and driver behind the wheel. The
multi-sensor fusion is implemented via algorithm based on Kalman filtering tech-
nique. Navigation accuracy can be enhanced using this filtering approach. For the
verification of fusion approach, land vehicle test was performed and the results were
discussed. Results showed that the horizontal position errors were suppressed around
1 meter level accuracy under simulated non-GPS availability environment. Under
normal GPS environment, the horizontal position errors were under 40 cm in curve
trajectory and 27cm in linear trajectory, which are definitely depending on vehicular
dynamics.
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1. INTRODUCTION

The next wave of motor vehicles will do more than transportation or commutation. In flourishing
future telematics environment - the combination of telecommunications and informatics, our next
vehicle will be a mobile office, a data center on wheels, a node on an E-commerce network, and
a moving entertainment center. To supply the adequate contents for mobile driver, it is required to
follow up super-power technology in following areas - mobile transmission and transfer rate of large
volume data and determination of vehicle’s position using satellite navigation (HILTECH 2001).

In that sense, the integration of a navigation-grade IMU and the GPS has lots of advantages,
where navigation or position and attitude information is required. When it comes to land vehicle
application and telmatics, integration is particularly required in urban canyon areas where the signal
from the satellites is susceptible to blocking or detracting by high story building or trees. However,
there are limitations of government restrictions and high price in using high performance IMU (Shin
2001). Therefore, recent research and study have emphasized on using low cost IMU and GPS
integration by the benefit of computing power and low price of IMU.
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Figure 1. General Loosely Coupled Approach.

In this paper, we present a novel approach to integrate IMU and GPS under good satellite signal
tracking environment and IMU/DMI integration under bad satellite signal reception. The implemen-
tation of this approach can provide better circumstances for future telematics based society.

This paper is organized as follows. In Section 2 and 3, basic ideas of integrating DGPS/IMU/DMI
are introduced. Experimental results are covered in Section 4. Finally, conclusions are given in Sec-
tion 5.

2. GPS/IMI/DMI INTEGRATION ISSUES

GPS/IMU/DMI integration is required to meet the positioning accuracy and availability in a local
area. There are basically two-integration approach based on extended Kalman filtering technique,
namely loosely coupled and tightly coupled approaches. With regard to loosely coupled approach,
it manages GPS, IMU and DMI as an independent system. GPS or DMI solution is fed back into
Kalman filtering to estimate IMU errors. The errors in the derived position and velocity are modeled
as white noise. In contrast, tightly coupled approach deals with GPS, IMU and DMI as one system
and one sensor. Therefore, only single filter is adopted to complete the integration system (Brown &
Hwang 1997).

With regard to DMI, the wheel rotation sensor is used. The wheel revolution from the sensor
is transformed to measure total distance that a vehicle traveled. Given time information traveled, a
forward velocity is determined. DMI is not subject to signal masking or outages. The positioning
errors are accumulative with time. For the purspose of calibration of DMI sensor, the scale factor
error is the most critical element as it affects the total distance traveled and the forward speed. Hence,
adequate modeling for this error state should be designed as either a random constant or a first order
Gauss-Markov process.

DMI plays a critical role in that process especially in loosely coupled method. When the land
vehicle enters into GPS unfavorable environment, DMI provides an alternative measurement to cal-
ibrate and compensate a low cost IMU. The rest of the paper presents a design of GPS/IMU/DMI
integration, the details of mathematical modeling and results obtained field practical experiment.
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3. GPS/IMU/DMI INTEGRATION FILTER DESIGN

The integration of GPS/IMU/DMI is based on the concept of loosely coupled method and takes
advantage of extended Kalman filter.

3.1 IMU Error Model

To construct the dynamic model for the Kalman filter requires mathematical error model of IMU
and GPS systems. Several IMU error models have been derived, which are all equivalent. In this
paper, the following error model is used. Error state vectors in the Kalman filtering scheme consist
of navigation parameters, and accelerometer and gyroscope error states (Jekeli 2001). In this model,
the errors modulated by the Earth’s spin rate are neglected because of short-range application.
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where da, 65 and &~y are the orientation error vector, Vn and Ve are the velocity error vector,
d¢ and 6 are the position error vector respectively. With regard to sensor errors, we considered
gyroscope bias which denoted as dw, accelerometer bias and scale factor which denoted as d f and
k, respectively. In this model, the errors are modulated by the Earth’s spin rate is neglected because
of short-range application.

3.2 IMU/GPS Integration

In this paper, we adopted following GPS/IMU integration approach. The detailed description
of integration scheme is depicted in Fig 1. This fusion approach includes a 17 state Kalman filter
that is to calibrate IMU and a navigation equation that is to transform angular velocity and linear
acceleration to attitude, velocity and position. The estimated errors from Kalman filter components
are fed back to update the inertial solution and sensor measurements (Farrel & Barth 1999). The
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Figure 2. Multi-Data Fusion during GPS Signal Blockage.

position and velocity from GPS are considered as measurements and observation vector is as follows
(Kim et al. 2002).

7 = [ Vins ]_[ Veps ] 7= [OizS Iiza 0O 3)
Pins Pgps |’ Oics 0 Iz
3.3 IMU/DMI Integration
From DMI, the information of pulse and time interval representing distance traveled can be
acquired. The accuracy of DMI is limited by distance measurement and that system requires having
initial location and attitude conversion matrix as containing relative positioning. The detail data flow
is depicted in Figure 2. The measurement of DMI should be converted to navigation frame and offset
vectors between sensors are considered. Hence, the observation is as follows.

Z= [Vvins] - C’;‘[Speed] + (Qie + Qen)CI?A-Pa H= [Oiz3 Iiz2] (4)

where AP represent sensor displacement vector, () represents the rotation rate of the Earth, and
Qe represents the rate of change of position.

4. EXPERIMENTAL RESULT

In order to verify the reliability of GPS/IMU/DMI integration, field test was performed for 30
minutes in a trajectory chosen from a suburb of DaeJeon. The test vehicle consists of single Trimble
GPS receiver, single Litton 200 IMU, and DMI, which mounts directly to the vehicle’s right side rear
wheel. Raw IMU and DMI measurements were recorded at 200 Hz, while dual-frequency GPS data
were logged at 1 Hz. During the experimental test, there were more than 6 visible satellite signals
available.

Fig. 3 shows a vehicle trajectory used for validation of integration approach. In this chapter,
we deliberately selected three different environments. In case I section, we simulated that there
was GPS signal blockage and analyzed the IMU/DMI fusion errors. In case II and III, we analyzed
the IMU/GPS prediction errors with respect to different vehicle dynamic such as curve and linear
trajectory. For performance analysis, we compared the result of commercial post-processing S/W
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Figure 3. Vehicle Trajectory with GPS signal outage position.

L Detailed Trajactory in CASE | Section L ati Dl(aﬂ-lj Trajectory in CASE Il Leti (deg) _D.:l.l':.d Trejectory in CASE th
PN o Tean : 0.40m| [ ] Mean : 0.27m}
waeel = de Istd : 0.33m o Istd: 0.04m |

384052 S

38.387| 26404 3684

38.386{Mex : 6 meters in

36.403

3% TMax > § meters in
36.402 36.395| Max | meters in 280 ssconds
38.384|
38.363Meen * 0.91m) 38.401
Std : 0.87m
’ BT 13
®¥s7e zrane 127378 12738 127.382 A 375 127378 127.377 127378 127.379 127.38 B s 1arse 12736 127
longhude(deg) langiude(dsg) ongieviogieg)

Figure 4. Detailed Trajectory in Case I, 11 and IIL

POSPac™. It computes and integrates carrier phase GPS solution and inertial data in forward and
reverse time processing to heighten the data accuracy, which has around 1-2 cm level accuracy under
GPS favorable environment (Mostafa 2001). Figure 4 shows the detail trajectories of case I, IT and
IIT and horizontal positioning errors in each cases. The results of IMU/GPS or IMU/DMI integration
approaches were denoted in black line and results of POSPac™ were illustrated in red dotted line.
Our fusion approach provided similar result with POSPac™.

For the analysis, we simulated GPS adverse operational environment in case I section because
of the analysis of IMU/DMI integration performance. In case I, the mean positioning errors are
successfully suppressed below 1 meters although maximum positioning errors went up to 6 meters in
200 seconds. Therefore, our fusion approach successfully verified that it could meet the requirements
of land vehicle navigation around meter level accuracy. In case II and III, where GPS favorable
environment supported, mean positioning errors are under 40 cm. As expected, the position errors
are more related to vehicle maneuver. Especially, the smaller errors were indicated in linear vehicle
maneuver. Table 1, 2 and 3 summarize mean and standard deviation positioning errors in each case.

5. CONCULSION

As the vehicle enters GPS unfavorable environments such as urban canyon, the IMU cannot
provide enough information for telematics and land vehicle navigation. To overcome this drawback
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Table 1. Positioning error in Case 1.

East North
Mean (m) 0.814 0410
Std (m) 0.572 0.658

Table 2. Positioning error in Case II.

East North
Mean (m) 0.304 0.148
Std (m) 0.143 0.038

Table 3. Positioning error in Case III.

East North
Mean (m) 0.145 0.138
Std (m) 0.032 0.658

of low cost IMU, we present an approach to integrate IMU, GPS and DMI utilizing velocity calcu-
lated from odometer sensors. The measurements were fed back into the Kalman filter to reduce and
compensate IMU errors and improve the performance during GPS signal blockage. Preliminary test
results were presented to show the effectiveness for telematics application. The contribution of this
paper is that we introduce another modality to integrate low cost IMU, GPS and DMI for telematic
applications, even though further simulations and algorithm refinements are required.
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