• Title/Summary/Keyword: Vehicle Historical Data

Search Result 32, Processing Time 0.026 seconds

Mobility Management Scheme for Vehicles Moving Repeated Path (반복 경로를 운행하는 차량의 이동성 관리 기법)

  • Choi, Gyu-Yeon;Han, Sang-Hyuck;Lee, Jung-Girl;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.104-111
    • /
    • 2012
  • It is advantageous to avoid the handover to cell whose dwell time is short or can be ignored in terms of service continuity and average throughput. This paper proposes the handover scheme that is suitable for vehicle in order to improve the wireless Internet service quality. In the proposed scheme, the handover process continues to be learned before being modeled to Discrete-Time Markov Chain (DTMC). This modeling reduces the handover frequency by preventing the handover to cell that could provide service sufficiently to passenger even when vehicle passed through the cell but there was no need to perform handover. In order to verify the proposed scheme, we observed the average number of handovers, the average RSSI and the average throughput on various moving paths that vehicle moved in the given urban environment.

Conceptual Design Trade Offs between Solid and Liquid Propulsion for Optimal Stage Configuration of Satellite Launch Vehicle

  • Qasim, Zeeshan;Dong, Yunfeng
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.283-292
    • /
    • 2008
  • The foremost criterion in the design of a Satellite Launch Vehicle(SLV) is its performance capability to boost the designated payload to the desired mission orbit; it starts from focusing on the SLV configuration to achieve the velocity requirements($}\Delta}V$) for the mission. In this paper we review an analytical approach which is suitable enough for preliminary conceptual design and is used previously to optimize stage configurations for Two Stage to Orbit SLV for Low Earth Orbit(LEO) Missions; we have extended this approach to Three Stage to Orbit SLV and compared different propellant options for the mission. The objective is to minimize the Gross Lift off Weight(GLOW). The primary performance figures of merit were the total inert weight of the SLV and the payload weight that the SLV could lift into LEO, given candidate propulsion systems. The optimization is achieved by configuring the $}\Delta}V$ between stages. A comparison of configurations of single-stage and multi-stage SLVs is made for different propellants. Based upon the optimized stage configurations a comparative performance analysis is made between Liquid and Solid fueled SLV. A 3 degree of freedom trajectory-analysis program is modeled in SIMULINK and used to conduct the performance analysis. Furthermore, a cost analysis is performed on our stage optimized SLVs. The cost estimation relationships(CER) used give us a comparison of development and fabrication costs for the Liquid vs. Solid fueled SLV in man years. The pros and cons of the production, operation ability, performance, responsiveness, logistics, price, shelf life, storage etc of both Solid and Liquid fueled SLVs are discussed. The statistics and data are used from existing or historical(real) SLV stages.

  • PDF

Developing Road Hazard Estimation Algorithms Based on Dynamic and Static Data (동적·정적 자료 기반 도로위험도 산정 알고리즘 개발)

  • Yang, Choongheon;Kim, Jinguk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.55-66
    • /
    • 2020
  • This study developed four algorithms and their associated indices that can quantify and qualify road hazards along roadways. Initially, relevant raw data can be collected from commercial vehicles by camera and DTG. Well-processed data, such as potholes, road freezing, and fog, can be generated from the Integrated management system. Road hazard algorithms combine these data with road inventory data in the Data Sharing Platform. Depending on well-processed data, four different road hazard algorithms and their associated indices were developed. To test the algorithms, an experimental plan based on passive DTG attached in probe vehicles was performed at two different test locations. Selection of the test routes was based on historical data. Although there were limitations using random data for commercial vehicles, hazardous roadways sections, such as fog, road freezing, and potholes, were generated based on actual historical data. As a result, no algorithm error was found in the entire test. Because this study provides road hazard information according to a section, not a point, it can be practically helpful to road users as well as road agencies.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

A Study on the Profit Increase through a New Production/Distribution Method at S Plastic Injection Molding Factory (S 플라스틱 사출성형 공장에서 새로운 생산/배송 방법에 의한 수익증가의 연구)

  • Jung, Gyu-Bong;Park, Yang-Byung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.48-54
    • /
    • 2010
  • S plastic injection molding factory located at Namdong Industrial Complex in Incheon produces plastic parts for semiconductor, vacuum cleaners, office furniture, etc. It produces the parts to customers' order and delivers them directly to customers at due dates using the trucks of freight company. In recent years, it has been suffered from the excessive production cost, high lost sales rate, rigid response to customers' order, and high delivery cost, which affect negatively on its profit. This paper introduces a case study on the profit increase through a newly proposed production and distribution method which applies a make-to-stock and multi-visit delivery strategy at S plastic injection molding factory. The proposed method is evaluated by comparing with the current method with respect to sales profit using the historical data of customer demand. It is confirmed through the computational experiments that the proposed production and distribution method yields almost double increase in profit resulted from the increased production, reduced lost sales, reduced production cost, and reduced delivery cost.

An Automatic Pattern Recognition Algorithm for Identifying the Spatio-temporal Congestion Evolution Patterns in Freeway Historic Data (고속도로 이력데이터에 포함된 정체 시공간 전개 패턴 자동인식 알고리즘 개발)

  • Park, Eun Mi;Oh, Hyun Sun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.522-530
    • /
    • 2014
  • Spatio-temporal congestion evolution pattern can be reproduced using the VDS(Vehicle Detection System) historic speed dataset in the TMC(Traffic Management Center)s. Such dataset provides a pool of spatio-temporally experienced traffic conditions. Traffic flow pattern is known as spatio-temporally recurred, and even non-recurrent congestion caused by incidents has patterns according to the incident conditions. These imply that the information should be useful for traffic prediction and traffic management. Traffic flow predictions are generally performed using black-box approaches such as neural network, genetic algorithm, and etc. Black-box approaches are not designed to provide an explanation of their modeling and reasoning process and not to estimate the benefits and the risks of the implementation of such a solution. TMCs are reluctant to employ the black-box approaches even though there are numerous valuable articles. This research proposes a more readily understandable and intuitively appealing data-driven approach and developes an algorithm for identifying congestion patterns for recurrent and non-recurrent congestion management and information provision.

Discovery of the Dmitri Donskoi ship near Ulleung Island(East Sea of Korea), using geophysical surveys (물리탐사기술을 이용한 침몰선 Dmitri Donskoi호 탐사)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.104-111
    • /
    • 2005
  • Dmitri Donskoi, the Russian cruiser launched in 1883, is known to have sunk near Ulleung Island (East Sea, Korea) on May 29, 1905, while it was participating in the Russo-Japanese War. In order to find this ship, information about its possible location was obtained from Russian and Japanese maritime historical records. The supposed location of the ship was identified, and we conducted a five-year geophysical survey from 1999 to 2003. A reconnaissance three-dimensional topographic survey of the sea floor was carried out using multi-beam echo sounder, marine magnetometer, and side-scan sonar. An anomalous body identified through the initial reconnaissance survey was identified by a detailed survey using a remotely operated vehicle, deep-sea camera, and the mini-submarine Pathfinder. Interpretation of the acquired data showed that the ship is hanging on the side of a channel, at the bottom of the sea 400 m below sea level. The location is about 2 km from Port Jeodong, Uleung Island. We discovered 152 mm naval guns and other war materiel still attached to the hull of the ship. In addition, the remnants of the steering gear and other machinery that were burnt during the final action were found near the hull. Strong magnetic fields, resulting from the presence of volcanic rocks in the survey area, affected the resolution of the magnetic data gathered; as a result, we could not locate the ship reliably using the magnetic method. Severe sea floor topography in the gully around the hull gave rise to diffuse reflections in the side-scan sonar data, and this prevented us from identifying the anomalous body with the side-scan sonar technique. However, the sea-floor image obtained from the multi-bean echo sounder was very useful in verifying the location of the ship.

Prediction of Divided Traffic Demands Based on Knowledge Discovery at Expressway Toll Plaza (지식발견 기반의 고속도로 영업소 분할 교통수요 예측)

  • Ahn, Byeong-Tak;Yoon, Byoung-Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.521-528
    • /
    • 2016
  • The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.

A Spatial Analysis about Arrival Delay and Dispatch Distribution of the 119 Rescue-Aid Service utilizing GIS - Gyeongsangbuk-Do Case Study - (GIS를 활용한 119 구조구급서비스의 도착지체 및 출동배치에 대한 공간분석 - 경상북도 사례 연구 -)

  • Oh, Chang-Seok;Lee, Seungwon;Lee, Inmook;Kho, Seung-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.13-22
    • /
    • 2012
  • The 119 emergency rescue-aid service operated by Korean government is a very valuable in a society and its importance is growing in Korea as an aging society. Especially, the emergency vehicle's arrival time to accidents place is an important variable which affects initial emergency measure for patients and it depends on the road network attributes, such as emergency service station's location, accessibility to accidents place and so on. This study aims to analysis the emergency vehicles' arrival delay and the dispatch station in the viewpoint of efficiency utilizing the real rescue-aid activity data. We analyzed the dispatch distribution of the emergency rescue-aid service at first. And we analyzed high accident rate locations not involved in the fixed radius of rescue-aid service stations and display GIS map showing regions have been delayed. The input data of the road network speed is based on the KTDB (Korea Transportation Database) and historical rescue-aid data is from Gyeongsangbuk-do's fire service headquarters.

Preliminary Design of a Urban Transit Passenger Guidance System Using Congestion Management Model (혼잡관리 모형을 이용한 도시철도 이용객 동선유도시스템 기본설계)

  • Kim, Kwang-Mo;Park, Hee-Won;Kim, Jin-Ho;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3610-3618
    • /
    • 2015
  • The congestion of railway vehicle and station shows up to 220%. Especially, transfer resistance of passenger increase rapidly by the collision of circulation. So increment of travel time, occurrence of safety accidents act as a factor that inhibits the utilization of urban railway station. In this paper, to improve traveling speed and comfort of urban rail passengers, urban transit passenger guidance system using congestion management model is proposed. The congestion management model that can mitigate a recurring/non-recurring congestion is constructed and the preliminary design of the system (middleware system, control system, guidance drive system) is carried out. Passenger Guidance System is configured by step for changing the external data into a form usable by the algorithm, step to perform the congestion management algorithm using the real-time data and historical data, step to control device based on the value that is calculated by congestion management algorithm, step to drive the device based on the information in the control system and circulation guidance devices. In the future, detail design will be performed based on the preliminary design. A prototype of the various devices according to the station structures and locations will be made. The control module of guidance device will be developed.