• Title/Summary/Keyword: Vehicle Gateway

Search Result 58, Processing Time 0.035 seconds

A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle

  • Kim, KyungDeuk;Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4123-4141
    • /
    • 2019
  • Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully autonomous vehicle that does not require a person to drive at all. The automobile industry has been trying to develop Level 5 to satisfy safety, but commercialization has not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several problems to be solved for driving safety. To solve one of these, this paper proposes 'A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle' that diagnoses not only the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other parts when a certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the translation of messages happening in a vehicle, the IOG not only has the translation function of an existing gateway but also judges whether a fault happened in a sensor or parts by using a Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the correlation between previous diagnosis result and current measured parts data.

Automotive Diagnostic Gateway using Diagnostic over Internet Protocol

  • Lee, Young Seo;Kim, Jin Ho;Jeon, Jae Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.313-318
    • /
    • 2014
  • Recently, Ethernet-based Diagnostic Over Internet Protocol (DoIP) was applied to automotive systems, and in-vehicle gateways have been introduced to integrate Ethernet with traditional in-vehicle networks, such as the local interconnect network (LIN), controller area network (CAN) and FlexRay. The introduction of in-vehicle gateways and of Ethernet based diagnostic protocols not only decreases the complexity of the networks, but also reduces the update time for ECU software reprogramming while enabling the use of a range of services, including remote diagnostics. In this paper, a diagnostic gateway was implement for an automotive system, and the performance measurements are presented. In addition, a range of applications provided by the diagnostic gateway are proposed.

Design of Vehicle Integrated Gateway System Using Ethernet Network (이더넷을 적용한 차량 통합 게이트웨이 시스템의 설계 방안)

  • Jang, Sung-Jin;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.705-707
    • /
    • 2014
  • The vehicle network such as CAN, MOST, Ethernet has different protocols. In the case of Ethernet data, when data is transmitted from Ethernet to MOST150, it cannot be treated by Ethernet channel of MOST150, leading to data loss and transmission delays. Thus, this thesis proposes vehicle integration GATEWAY, which can form a network by organically connecting the Ethernet and MOST150 networks and minimize the delay and data losses caused by the differences in bandwidth.

  • PDF

Development intelligent integrated gateway for in In-Vehicle Network (In-Vehicle Network에서 지능형 통합 Gateway 시스템 개발)

  • Jang, Jong-Wook;Oh, Se-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.7-10
    • /
    • 2009
  • 본 연구에서는 차량 네트워크를 구성하는 CAN(Controller Area Network), MOST(Media Oriented System Transport)등의 버스 시스템을 중심으로 IVN(In-Vechicle Network)에 대한 선행연구와 지능형 통합 Gateway 개발 연구를 통해 통합적인 차량 상태정보 수집 및 교환을 위한 차량 Gateway를 제시하고, Soc(System on Chip)형태의 차량용 인터페이스(HMI, Human Machine Interface)를 통한 지능형 통합 GateWay 통신 기술을 OSGi의 번들 형태로 제작하여 알아본다.

Implementation of Node Mapping-based FlexRay-CAN Gateway for In-vehicle Networking System (차량 네트워크 시스템을 위한 노드 매핑 기반 FlexRay-CAN 게이트웨이 구현)

  • Bae, Yong-Gyung;Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2011
  • As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) or FlexRay are essential for convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on the communication between heterogeneous networks such as body networking and chassis networking systems. A gateway based on message mapping method was developed to interconnect FlexRay and CAN networks. However, this type of gateways has the following shortcomings. First, when a message ID was changed, the gateway must be reloaded with a new mapping table reflecting the change. Second, if the number of messages to be transferred between two networks increase, software complexity of gateway increases very rapidly. In order to overcome these disadvantages, this paper presents FlexRay-CAN gateway based on node mapping method. More specifically, this paper presents a node mapping based FlexRay-CAN gateway operation algorithm along with the experimental evaluation for ID change.

Implementation FlexRay Gateway for In-Vehicle Network (차량용 네트워크를 위한 FlexRay 게이트웨이 구현)

  • Park, Jang-Sik;Kim, Hyun-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.488-489
    • /
    • 2009
  • In this paper, a FlexRay module and gateway is developed for high speed in-vehicle network. Speed of FlexRay is 10 times higher than that of CAN. In this paper, FlexRay module is implemented using MC9S12XF512 micro-controller and gateway converting CAN message to FlexRay message.

  • PDF

OSEK OS Based Gateway for Interconnecting WAVE and CAN (WAVE와 CAN 연동을 위한 OSEK OS기반 게이트웨이)

  • Kim, Ju-Young;Seo, Hyun-Soo;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.133-141
    • /
    • 2014
  • Recently, various services are provided by using WAVE protocol for communication among neighboring vehicles. And in order to operate stable system, the gateway for interconnecting in and out vehicle networks is required. In this paper, we propose gateway interconnecting WAVE and CAN protocol. The proposed gateway based on OSEK OS consists of a communication layer, a message translator layer and a message management layer. In the communication layer, WAVE communication part and CAN communication part are designed to communicate with WAVE and CAN. And in the message management layer, message management layer functions to store the received messages and check errors with the message. Based on these functions, experiment was conducted to analyze performance of the gateway with two scenarios such as transmitting periodically BSM as a message structure for safety services in vehicle-to-vehicle communications and responding to road side equipments requiring in-vehicle information. As a result of test, we verify our gateway performance by analyzing measured time in test scenarios.

System of Vehicle Auto Safety Simulation over MOST-CAN Network Gateway (MOST-CAN 네트워크 게이트웨이를 이용한 차량 자동 안전제어 시뮬레이션 시스템 설계 및 구현)

  • Choi, Yong-woo;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.773-776
    • /
    • 2009
  • Last of the car industry can be grouped in one-vehicle electronic equipment, the development of the network, and accordingly the communication between each of the network is important. The network currently being used in vehicles include CAN, LIN, MOST, FlexRay, etc. are used. Network of several different kinds of applications using the federation said they were also germ, which causes the driver some more convenient environment, the desire to drive a vehicle that is increasing. If vehicle for other network environments with one integrated environment to make it a gateway for research done actively, the more applications are expected to be developed. In this paper, using gateway between CAN bus used for Body Train-side control of the vehicle network and MOST provided for infotainment systems. In vehicle automatic safety control system will be designed by One of CAN Nodes car speed information sending to MOST Navigation while don't received GPS information in the tunnel.

  • PDF

The Study of Gateway Control Module Using SAE J1939 Protocol (SAE J1939 프로토콜기반 Gateway 제어모듈 개발에 관한 연구)

  • Ko, Youngjin;Kim, Doyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • This study presents the development of Gateway Control Module using SAE J1939 protocol for the commercial vehicles. Presently, the load rate of CAN bus is increased by the single network composition and addition of new ECUs for development of intelligent vehicles. Because the embedded system of the integrated network control function has the errors of the CAN bus caused by the increase of ECU, it is needed for development of commercial vehicles. Also, this study presents the development of smart functions that can diagnosis CAN bus errors, fault diagnosis of ECU and basic function that arbitrates CAN bus between ECUs of commercial vehicle. GCM was designed for 4channel separation about Gateway function as solution of load rate decrease and smart functions. HILS(Hardware in the loop simulation)system that can achieve simulation about CAN Messages of all systems on vehicle was applied to evaluate performance and verification of all functions and performance. The load rate on CAN bus was decreased at using functions what was delivery, block and process of GCM. Through this, it was enabled to organize systematic architecture for gateway.

Method of In-Vehicle Gateway to Reduce the Reprogramming Time (리프로그래밍 시간 단축을 위한 차량 게이트웨이 개선 방안)

  • Kim, Jin-Ho;Ha, Kyung-Jae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.25-32
    • /
    • 2019
  • This paper proposes the method of an in-vehicle gateway to reduce the reprogramming time for the ECU (Electronic Control Unit). In order to reduce the reprogramming time, the gateway must prohibit transmitting messages, that are not related to reprogramming, to the destination CAN network, and no ECU should diagnose the DTC(Diagnostic Trouble Code) that indicates CAN communication error caused by prohibiting CAN messages by the gateway. Moreover, STmin, which are the minimum time between two consecutive CAN messages, should be minimized. In order to do this, this paper proposes the method that uses the link control command specified in UDS(Unified Diagnostic Services) and hardware based gateway functionality that are supported by the latest MCU(Micro Controller Unit). The proposed method is developed using TC275 based embedded system, and its results are presented.