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Abstract 
 

Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully 

autonomous vehicle that does not require a person to drive at all. The automobile industry has 

been trying to develop Level 5 to satisfy safety, but commercialization has not yet been 
achieved. In order to commercialize autonomous unmanned vehicles, there are several 

problems to be solved for driving safety. To solve one of these, this paper proposes ‘A Deep 

Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an 

Autonomous Vehicle` that diagnoses not only the parts of a vehicle and the sensors belonging 

to the parts, but also the influence upon other parts when a certain fault happens. The DLPP 
consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). 

Though an existing vehicle gateway was used for the translation of messages happening in a 

vehicle, the IOG not only has the translation function of an existing gateway but also judges 

whether a fault happened in a sensor or parts by using a  Loopback. The payloads which are 
used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The 

Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred 

from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a 
vehicle's fault by considering the correlation between previous  diagnosis result and current 

measured parts data.  
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1. Introduction 

Conventional driving vehicles impose not only much cost such as fuel, depreciation and 

insurance but also a variety of external factors such as jaywalking, failed brakes, road factors, 
and environmental factors on the drivers. Autonomous driving vehicles have the power to 

significantly diminish both much cost and externalities imposed on the drivers.  

 There is an increasing interest in autonomous vehicles around the world, and the need is 

also being emphasized. Autonomous vehicles have many in-vehicle sensors, lidars and 
stereo-cameras to create a lot of sensor and vision data. The data is executed by computers and 

IoT systems safely transfer important information to a cloud. The Autonomous driving 

platform in the cloud has a Deep Learning system which judges an accurate driving 
decision-making. The system has a connection to the DB with previous driving history. 

Autonomous vehicles now decides to do something in general or specific circumstances while 

driving [1]. 
Companies around the world are increasingly interested in Autonomous Vehicles, so they 

are aiming at faster commercialization of autonomous vehicles. In order to accelerate its 

commercialization, autonomous driving requires no external threats and no internal part fault 

because of safety. They have fallen sharply due to the development of high performance 
sensors, software and AI. However, there is a great lack of research on the part diagnosis of an 

autonomous vehicle. An autonomous vehicle consists of advanced sensors and high 

performance Graphics Processing Units (GPU), Electronic Control Unit(ECU), On-Board 
Diagnostics (OBD), Artificial Intelligence (AI), etc. In autonomous vehicles, sensors are used 

for various purposes such as position recognition, object recognition, etc., and the usage of 

sensor is increasing by using fusion of sensor. However, because sensors are fragile 
components, the self-diagnosis method so far has not been able to diagnose all the sensors of 

the vehicle. Many problems arise because all the sensors of the vehicle can not be diagnosed. 

First, it is difficult to grasp the causes of failures in detail. Second, it is difficult to determine 

the cause of the failure. 

To solve one of these, this paper proposes a Deep Learning Part-diagnosis Platform(DLPP) 

based on an In-vehicle On-board gateway for an Autonomous Vehicle. It diagnoses not only 

the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other 

parts when a certain fault happens. It consists of an In-vehicle On-board gateway(IOG) and a 
Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the 

translation of messages happening in a vehicle, the IOG not only has the translation function of 

an existing gateway but also judges whether a fault happened in a sensor or parts by using a  
Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred 

to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by 

using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM 
algorithm, it diagnoses a vehicle's fault by considering the correlation between the previous 

diagnosis result and the data of current measured parts.  

The DLPP for an Autonomous Vehicle proposed in this paper is organized as follows. 

Previous related works will be presented in Section 2. After this, the main DLPP of this paper 
will be described in Section 3. The implementation details and the results are discussed in 

Section 4. Finally, the conclusions and future works are given. 
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2. Related Works 

2.1 Vehicle diagnosis 

In [2], the 3σ multi-level screening fault-diagnosis uses Gaussian distribution on 

determining the fault probability of the battery cell terminal voltage. For the statistical 

fault-analysis of a lot of electrical cars, a neural network is used to model big sample statistical 

law and fit. Applying the neural network algorithm combines the single car's fault-diagnosis 
results with big sample statistical regulation, constructs a more complete battery system 

fault-diagnosis method, and makes a corresponding analysis between the statistical result and 

an actual vehicle. 

In [3], the neural expert system uses a hybrid data mining technique so that it can  

efficiently and accurately mine a lot of data in the vehicle database which has previous history. 
The hybrid approach is made by combining two or more data mining techniques and is 

commonly used to maximize the accuracy of a classifier. It can make a generalization of the 

data in the DB with the learning ability of a neural network, 

In [4], the system works in three phases. The first phase presents two steering controllers 
using the sliding mode and the switched H controllers, the second phase describes an unknown 

input sliding mode observer, and the last phase presents an approach to the diagnosis of critical 

driving situations. All existing conditions are established using the Lyapunov approach. 

2.2 Loop-Back 

In [5], Three loopback methods are used to address the need to consider dual link failures 

and to handle these failures. The first two methods requires two edge-disjoint backup paths 

computed for each link for rerouting traffic when a pair of links fails. The methods require the 

identification of the failed links before recovery is completed. The last method requires the 

pre-computation of a single backup path and does not require link identification before 

recovery. An algorithm that pre-computes backup paths for links in order to tolerate 

double-link failures is then presented. 

In [6], a simple frequency domain joint transmitter and receiver I/Q imbalance estimation 

method is used for self-calibration of such wideband multichannel transceivers. Using two 

frequency domain training signals and a phase shifter inserted in the transceiver local 

loopback channel, the transmitter and receiver I/Q imbalances can be estimated separately. 

The estimation errors are also analyzed and the mean square error lower bounds are derived. 

In [7], a loopback linearity testing technique for an ADC/DAC pair is used; the key idea is 

to raise the effective ADC and DAC resolution by scaling the DAC output. First, during ADC 

testing, we scale down the DAC output to achieve the required test stimulus resolution and 

adjust the DAC output offset to cover the ADC full-scale range. Then, for DAC testing, we 

raise the effective ADC resolution by scaling up the DAC output. 

In [8], a cost-effective self-characterization technique is demonstrated that accurately 

predicts the harmonics of individual mixed-signal circuits by dithering the loopback path to 

Gaussian noise. A set of scale factors is applied to the dithered root-mean-square noise. The 

different scale factors yield a corresponding change in the harmonic magnitudes of the 

loopback responses. Based on this, we derive a precise nonlinear loopback behavior model to 

quantitatively identify the harmonics of a device under test. The results show that the proposed 

method can be used for practical characterization. 
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In [9], a new peer-to-peer streaming system is used that applies Loopback-MDC to a real 

network named TuBeck. The TuBeck consists of preprocessor, server, peer, and player 

modules with the support of network infrastructure library. In TuBeck, multimedia sources are 

preprocessed to multiple descriptions. Each description is divided as a sequence of 

H.264/AVC chunks by modified JM encoder for real-time streaming. The network 

infrastructure library provides the nodes (server and peers) with the fundamental 

functionalities of network connections and communications. Message exchange and 

streaming control among nodes follow the pre-defined LM protocol. The server, peer, and 

player modules are functionally multithreaded in order to enhance the system performance. 

2.3 LSTM 

 
Fig. 1. The composition of a Long Short-Term Memory (LSTM)  

 

Long Short-Term memory (LSTM) networks are a special kind of RNN, capable of learning 

long-term dependencies and computing both images as single data and speech or video as 
stream data. In Fig. 1, LSTM  unit is made up of a cell state, an input gate, an output gate and 

a forget gate. The cell state is responsible for “remembering” values over arbitrary time 

intervals; hence the word “memory” in LSTM and the LSTM gates compute an activation. In 

brief, the input gate manipulates the scope to which a new value goes into the cell, the forget 
gate manipulates the scope to which a value stays in the cell and the output gate manipulates 

the scope to which the value in the cell is used to compute the output activation of the LSTM 

unit. A forget gate removes the information in the self-recurrent unit and makes space for a 
new memory. The forget gate does this by multiplying the value of the memory cell by any 

number between 0(to delete) and 1(to keep). The exact value is determined by the current input 

and the output of the previous phase. The LSTM model adds the input gate for any new 

information not to go into the memory cell and the output gate for it to manipulate the output 
from the memory cell by multiplying the output of the memory cell by any number between 

0(no outputs) and 1(to keep output). This output gate may be of use if various memories 

compete against each other  [10]. 

In [11], a novel model of full-path learning recommendation is used. This model relies on 

clustering and machine learning techniques. Based on a feature similarity metric on learners, 
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they first cluster a collection of learners and train a Long Short-Term Memory (LSTM) model 

in order to predict their learning paths and performance. Personalized learning full-paths are 

then selected from the results of path prediction. Finally, a suitable learning full-path is 

recommended specifically to a test learner. 

In [12], the SR(Sentence Representations)-LSTM uses 2 hidden layers to address the 

drawbacks of not being able to catch sufficiently sentimental messages in the existing neural 

network model for a long time. The 1
st
  layer learns sentence vectors to represent semantics of 

sentences with an LSTM network, and  the 2
nd 

layer translates the relations of sentences into 

document. 

In [13], an attention network for object tracking is used. To construct the proposed 

attention network for sequential data, we combine Long-Short Term Memory (LSTM) and a 

residual framework into a Residual LSTM (RLSTM). The LSTM, which learns temporal 

correlation, is used for a temporal learning of object tracking. 

2.4 Sensor 

In [14], an RF-DC power conversion system is designed to efficiently convert far-field 

RF energy to DC voltages at very low received power and voltages. Passive rectifier circuits 

are designed in a 0.25 mum CMOS technology using floating gate transistors as rectifying 

diodes. The 36-stage rectifier can rectify input voltages as low as 50 mV with a voltage gain of 

6.4 and operates with received power as low as 5.5 muW(22.6 dBm). Optimized for far field, 

the circuit operates at a distance of 44 m from a 4W EIRP source. 

In [15], the design of mobile sensor networks for optimal data collection is addressed. 

The development is strongly motivated by the application to adaptive ocean sampling for an 

autonomous ocean observing and prediction system. A performance metric, used to derive 

optimal paths for the network of mobile sensors, defines the optimal data set as one which 

minimizes error in a model estimate of the sampled field. 

In [16], a wireless wearable system  is  described that was developed to provide 

quantitative gait analysis outside the confines of the traditional motion laboratory. The sensor 

suite includes three orthogonal accelerometers, three orthogonal gyroscopes, four force 

sensors, two bidirectional bend sensors, two dynamic pressure sensors, as well as electric field 

height sensors. The "GaitShoe" was built to be worn in any shoe, without interfering with gait 

and was designed to collect data unobtrusively, in any environment, and over long periods. 

3.  A Deep Learning Part-diagnosis Platform(DLPP) based on an 
In-vehicle On-board gateway for an Autonomous Vehicle 

3.1 Overview 

Fig. 2 shows the composition of ‘A Deep Learning Part-diagnosis Platform(DLPP) based 

on an In-vehicle On-board gateway for an Autonomous Vehicle`, which is composed of an 

In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an 

existing vehicle gateway was used for the translation of messages happening in a vehicle, the 

IOG not only has the function of an existing gateway but also judges whether a fault happened 

in a sensor or parts by using a  Loopback. The payload which judges a sensor as normal in the 

IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) 

diagnoses parts itself by using the payload transferred from the IOG. Because the PSM is 

designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the 
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correlation between previous diagnosis result and current parts. 

 
Fig. 2. The composition of the DLPP 

 

3.2 An In-vehicle On-board gateway(IOG) for Message Translation and Sensor 
Diagnosis  

The In-vehicle On-board gateway(IOG) proposed in this paper consists of the 3 

sub-modules explained in the following. First, a Message Translator Sub-module(MTS) 

translates messages for the communication between two other protocols and transfers the 

translated messages to a destination. Second, a Sensor Fault Decision Sub-module(SFDS) 

judges whether sensors are a fault by using a vehicle's sensor messages. Third, a Message 

Loopback Sub-module(MLS) judges whether faulty happened in a sensor or in Parts by using 

Loopback commands with the sensor messages which the SFDS judged as abnormal. Fig. 3 

shows the composition of the IOG. 

 
Fig. 3. The composition of the IOG 
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3.2.1 A Message Translation Sub-module(MTS) 

A Message Translation Sub-module(MTS) which performs the role of a gateway consists of 

an  Input Message Queue, an Output Message Queue and a gateway. To begin with, the MTS 

receives sensor messages from each ECU and stores them in an Input Message Queue. If the 

source and destination address of the messages are the same, the MTS sends the stored 

messages as Loopback messages to the SLS [17]. 

 If the source and destination address of the messages are not the same, the MTS sends to the 

SFDS the sensor messages stored in an Input Message Queue. At this time, the SFDS judges 

whether the received messages is normal or not. If the message is normal, it is sent to the 

gateway of the MTS. The MTS extracts only the information necessary for translation from 

messages and stores the extracted information in the MIT. The MTS translates the stored 

information into the type of a destination protocol. Fig. 4 shows that the MTS translates 

messages into the type of a destination protocol by using the MIT. 

 

Fig. 4. The gateway translating a CAN message into a FlexRay message 

In Fig. 4, the fields of the MIT consist of the count of divided messages, current message 

number, source address, destination address, message priority, message ID and Data. If the 

size of  data before translated is larger than that of data which is being translated currently, the 

count of divided messages and Current message number fields are used to divide messages. 

The Destination node ID and Source node ID of a CAN frame are, to begin with, stored in the 

source and destination address fields of the MIT and then these are stored in the Frame ID of a 

FlexRay Frame. The Priority and Service type ID of a CAN frame are stored in the Message 

Priority and Message ID field of the MIT and the Message Priority is translated into a Cycle 

count of a FlexRay Frame and the Message ID into Frame ID. Because the CRC and ACK of a 

CAN Frame do not need translation, they are not stored in the MIT. When messages are 

translated, the State bit, Payload Length, Header CRC and CRC of a Flexray frame are 

generated newly according to the each message. If the gateway completes message translation, 

the translated messages are sent to an Output Message Queue. The MTS sends the messages to 

a destination according to the Priority of messages stored in an Output Message Queue.  
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3.2.2 A Sensor Fault Decision Sub-module(SFDS) 

The SFDS receives a sensor message from the MTS and judges whether its payload is 

normal. The SFDS uses a Rebound Rule Table(RRT) and a Data Table(DT) to judge the 

normal value of the payload. Fig. 5 shows the composition of the RRT and DT. 

  

Fig. 5. The composition of the RRT and DT and the corelation between them 

The RRT fields consist of ID, MIN, MAX, L and LN. ID field represents sensor ID. MIN 

and MAX field represents the Max and Min of the current payload which is computed on the 

basis of the payload received just before. If the just previous payload does not exist, the SFDS 

computes the Max and Min by using the normal value of sensors.  L(Loopback) and 

LN(Loopback Normality) field represents a flag. L is a flag representing whether the 

Loopback about a sensor was executed. If L is ‘0’, it means that the Loopback about a sensor 

was not executed. If L is ‘1’, it means that the Loopback about a sensor was executed. LN 

represents the result of Loopback when Loopback about a sensor was executed. If LN is ‘0’, it 

means that the result of the Loopback is an error. If LN is ‘1’, it means that the result of the 

Loopback is a success. If the L field  of the RRT is ‘0’, the value of LN field  represents 

‘NULL’. Algorithm 1 shows the process to judge whether a sensor is normal or not.  

 

Algorithm1. Sensor Fault Decision Sub-module 

SFD(int sensorID, int data, int Loop[], int RRT[][], int DT[][]){ 

//indexing  

const int ID =0, int MIN=1, int MAX=2, int LF=3, int LN=4; 

int n=0, i=0; 

// Finding the ID of the sensor received from RRT 

for(i=0; i<length(RRT); i++){ 

  if(RRT[i][ID] == sensorID) 

    n = i;}  

if(RRT[n][L] == 1 && RRT[n][LN] == 0){ //Abnormal Payload 

  end; } 

else{ // Normal Payload 

if(RRT[n][MIN] <= data && data <= RRT[n][MAX]){ 

// Sensors that have not yet run loopback 

if(RRT[n][L] == 0){ 

if(DT[n][MIN] <= data && data <= DT[n][MAX]){ 
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      send(data, PSM); 

end;} 

else{ 

SLS.LoopBack(sensorID, data, Loop[]); 

        RRT[n][L] = Loop[0]; 

        RRT[n][LN] = Loop[1]; 

        end;}} 

// Sensor that executed loopback  

else{ 

RRT[n][L] = 0; 

      RRT[n][LN] = Null; 

send(data, PSM); 

end;}} 

else{ 

    SLS.LoopBack(sensorID, data, Loop[]); 

    RRT[n][LF] = Loop[0]; 

    RRT[n][LN] = Loop[1]; 

    end;}}} 

3.2.3 A Sensor Loopback Sub-module(SLS) 

The Sensor Loopback Sub-module(SLS) judges whether a sensor is faulty or not actually 

by using Loopback. If the sensor messages which are judged as abnormal in the SFDS are 

transferred to the SLS, the SLS stores them in a Loopback Queue. The SLS translates the 

messages stored in the Loopback Queue into Loopback Messages in sequence. The translated 

messages are transferred to the Message Queue of the MTS and tored in the Loopback Table. 

The Loopback Messages stored in the Output Message Queue are transferred to the protocol 

bus suitable for a message type and then to the SFDS again. If the SFDS received  Loopback 

Messages from outside, they are stored in the Input Message Queue of the MTS like other 

messages. The MTS transfers to the SLS the message whose source and destination address is 

IOG. If the SLS receives Loopback Messages from the MTS, it compares the messages stored 

in the Loopback Table with those received from the  MTS. If two kinds of messages are the 

same, the SLS judges that the sensor is normal but if they are different, the SLS judges that the 

sensor is not normal. Then the SLS transfers the judgment result to the SFDS.  

3.3 A Part Self-diagnosis Module (PSM) 

The PSM in the DLPP uses an LSTM algorithm for the self- diagnosis of a vehicle`s parts 

and the LSTM memorizes the diagnosis result longer than the RNN because of a forget gate. 

The PSM receives payloads from the IOG steadily and diagnoses the parts by entering the 

payloads into the LSTM model. In particular, because the PSM computes the correlation 

between previous diagnosis result and current measured parts` data, it diagnoses the condition 

of parts accurately. Fig. 6 shows the simple composition of the PSM, where X represents the 

input of the LSTM as the set of payload collected from a vehicle. G represents the output of the 

LSTM and the condition of parts diagnosed in the LSTM. Because t represents specific time, 

the    of Fig. 6 means the set of payloads used as input at a specific time. 
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Fig. 6. The composition of the PSM 

3.3.1 input and output of PSM 

To begin with, the input and output of the PSM has to be defined for the self-diagnosis of 

a vehicle. The input of the PSM represents all the payloads transferred from the IOG. Because 

the IOG transfers the payload value 0 of a faulty sensor to the PSM to judge whether the sensor 

is normal, the payload is not applied to self-diagnosis.  The input, X of the PSM is expressed 

like the Formula (1) and the n of Formula(1) means the count of in-vehicle sensors. 

 

                                                                         (1) 

 

The output of the PSM represents diagnosis result. The condition of parts is decided 

according to the value of each output node which exists between -1 and 1. If the value is less 

than -0.4, the PSM judges the part as fault. If the value is greater than -0.4 and less than 0.4, the 

PSM judges that the part needs to be checked. If the value is greater than 0.4, it judges that the 

part is normal. The set of an output node, G is expressed like the Formula (2) and m of Formula 

(2) means the count of vehicle parts. 

 

                                                                    (2) 

 

3.3.2 The Operation process of PSM 

 

Fig. 7. The Structure of LSTM 

 

Fig. 7 shows the Structure of the LSTM consisting of 2 States and 3 gates. In the Fig. 7, black 

lines represent the direction where data is headed and green squares represent the neural 

network model used in each gate. The   and tanh within the green squares mean activation 

functions. In the Formula(3) and (4),   represents a sigmoid function and tanh a tanh function. 
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           (3) 

        
     

     
     (4) 

 

The yellow circle of Fig. 7 represents an operator between data. If the data reaches the 

yellow circle, it is computed with the operator. The Cell State of the LSTM means an area to 

decide what data to memorize, by comparing previous output with current input and the 

Hidden State means an area to apply previous output and current input to the neural network 

model used in each gate. The computation of the LSTM is done in the 3 gates (input, output, 

and forget ). 

The forget gate decides what data to memorize among previous data in the Cell state and 

transfers to the Cell State the value of the forget gate,    computed with the Sigmoid Function 

of Formula(5) in the Hidden State by using previous output and current input.  

 

                         (5) 

 

In Formula(5),    means weight,      previous output,    current input, and    the bias 

of the neural network model. The input gate computes    in Formula(6) in the same way as    
and     with the tanh function in Formula(7).   

 

                          (6) 

                             (7) 

 

The result that the    is multiplied by the     is transferred to the Cell state. The input gate 

decides whether new data has to be added to the information processed in the forget gate. If the 

input gate and the forget gate complete computation, the DLPP updates the Cell state. The    
which the Cell state updated is computed in Formula(8). 

 

                      (8) 

 

In Formula(8), the         means the result of the forget gate and decides what data to 

remove among past results. The        means the result of the input gate and decides what 

data is add to the data processed in the forget gate. 

If the update of the Cell state is completed, the output gate decides what data to output 

among data of the Cell state. The result that the    computed by Formula(9) in the output gate 

is multiplied by the tanh(  ) computed by Formula(10) in the Cell State becomes the final 

output   . 

  

                         (9) 

                   (10) 

 

The neural network model used in each gate of the LSTM is learned by using 

Back-propagation. The PSM compares the previously diagnosed condition of a vehicle with 

the current diagnosed condition of a vehicle by using the LSTM steadily.  
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Fig. 8. The composition of the Part Self-diagnosis Module (PSM). 

 

Fig. 8 shows that 3 parts are diagnosed and the data of 8 sensors as input data are used in 

the PSM. The kinds of sensors measuring the condition of an Engine are Temp, Voltage and 

Current, the kinds of sensors measuring a Tire are Temp and Pressure and the kinds of sensors 

measuring the condition of a GPS are Latitude, Longitude and Altitude. The left input Data 

Table shows the payloads of the 8 sensors  are entered into the PSM every 1ms. The LSTM 

model diagnoses a vehicle using the input payloads. The right Diagnosis Result Table shows 

the diagnosis result of the PSM and the   ~   means the diagnosis result of  payloads  

measured every 1ms. The diagnosis result exists between -1 and 1 representing the condition 

of parts and the PSM judges the risk of parts according to the diagnosis result. In Fig. 8, the    

of the Diagnosis Result Table shows the diagnosis result of parts using   . Because the 

diagnosis result of     in an Engine is -0.7531 and it is between -1.0 and -0.4, the PSM judges 

the Engine as “Danger”. Because diagnosis result of    in a Tire is 0.9328 and it is between 

0.4 and 0.1, the PSM judges the Tire as “Safe”. Finally, because the diagnosis result of    in 

GPS is 0.1287 and it is between -0.4 and 0.4, the PSM judges the GPS as “Check”.  

3.3.3 The Neural Networks of PSM 

 

Fig. 9. The Structure of LSTM 

Fig. 9 shows that the LSTM consists of 2 States and 4 Deep Feed Forward(DFF) neural 

network models. All the payloads becomes the input data of each neural network model. 2 

States was already discussed in section 3.3.2. The DFF is differently generated according to 

the count of vehicle sensors, a vehicle model, etc., but DFF's input, hidden layer, weight,  
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output and learning method have to be designed to generate the DFF. 4 neural network models 

are designed in the same way, as explained in the following.  

First, the DFF uses the result, Xb that b(bias) was added to the input value, X of the PSM. 

The Xb is represented like Formula (11). The bias of all neural network models is 1 and is 

adjusted by weight. Because the bias is attached to Formula(11), the count of input nodes is 

   . 

 

                           (11) 

 

Second, the DFF uses 4 hidden layers and weights. The count of hidden layer nodes is 

larger than that of input layer nodes by 15. The DFF computes the value of each node using all 

the weight from the nodes of input layer to that of output layer. The set of hidden layers, H is 

represented like Formula (12) and the set of weights, W like Formula(13). 

 

      
    

    
    

      
        (12) 

        
      

      
      

        
      (13) 

 

In Formula (12), the k which has the value of 1 to 4 means a current hidden layer`s order. 

The o represents the count of hidden layer nodes.   
  represents the 4

th
 node of the 2

nd
 hidden 

layer. The size of the o is larger than that of input data by 16. In Formula (13), the q represents 

what order a current weight is and has a value between 1 and 5. The l represents a node count 

of a layer where current data is entered and the p represents a node count of the next layer 

where current data is outputted.     
  represents the 4th weight connecting the 4th node of the 

3rd hidden layer and the 2nd node of the 4th hidden layer.  

Third, the output G of the DFF which is a set of output nodes represents the condition of 

vehicle parts and is expressed like Formula(14). 

 

                          (14) 

 

Here, the m means the count of parts that can be diagnosed in the PSM. The values of 

output nodes get different according to activation functions. If an activation function is a 

Sigmoid, the output nodes have the value between 0 and 1 and if it is tanh, they have the value 

between -1 and 1. 

Fourth, the learning method of the DFF is explained here. 4 neural network models are 

learned based on Back-Propagation. To begin with, training input data is entered in the neural 

network model with initial weight. Whenever the data entered in a input layer goes to the 

output layer, the data is computed in each layer using an activation function and weight. Each 

neural network uses 2 activation functions. The 1
st
 activation function is Leaky ReLU which 

outputs an accurate result despite many hidden layers. Therefore, the activation function is 

used from  an  input layer to the last hidden layer. The 2
nd 

activation function is Sigmoid or 

tanh. Because the ReLU has a drawback that it has hard time analyzing result, a Sigmoid 

function with the result between 0 and 1 or a tanh function with the result value between -1 and 

1 is used between the last hidden layer and an output layer [18]. Formula (15) represents Leaky 

ReLU. A Sigmoid and a tanh function have already been explained in section 3.3.2. 

 

                            (15) 
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The node values of each layer by using the node values of a previous layer and the weight 

connected to the nodes have to be computed to find an output value of the DFF. The values of 

all NETs from an input layer to the 1
st
 hidden layer is computed in the Formula (16). Each 

value of NET is computed by multiplying the node values of an input layer by weights. And 

then an activation function is applied to each NET. The node values of the 1st hidden layer is 

computed by using the Leaky ReLU of Formula (17). 

 

     
     

 
       

         (16) 

  
              

        (17) 

 

The values of all NET from the 2
nd

 hidden layer to the last hidden layer are computed in 

Formula (16). The node values from the 2
nd

 hidden layer to the last hidden layer are computed 

in Formula (17).  

The NET value between the last hidden layer and an output layer is computed in Formula 

(18). The node values between the last hidden layer and output layer are computed using 

different activation functions(Sigmoid, tanh) in Formula(19) and (20). 

 

     
    

     
       

         (18) 

          
        (19) 

             
      (20) 

 

If the values of each layer are computed, an Error between the output value of learning 

data and that of neural network is computed by Formula(21). If Error is less than Errormax, the 

learning is closed. Here, the Errormax is a fixed number.  

 

       
       

 

 

 
          (21) 

 

Here,    is the output value of learning data. If Error is greater than Errormax, an error 

signal,   is computed to modify the weight of DFF.     is the error signal computed between 

the last hidden layer and an output layer. When the activation function is Sigmoid,    
 is 

computed with Formula(22). When the activation function is tanh,     is computed with 

Formula(23). 

 

   
                       (22) 

   
                          (23) 

 

If     was computed, then the error signals of hidden layer,    
    

 have to be 

computed. The error signal of hidden layer,     is computed with Formula(24) and the rest, 

   
    

 are computed with Formula(25). 

 

               
         

     
      

    
  

       

                   
              

     
           

    
  

      (24) 
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        (25) 

 

Here, if an error signal     
 of the current 3rd hidden layer is computed, t means the count 

of nodes of the 4th hidden layer corresponding to the next layer. c means a hidden layer 

number and a range of c is 1 to3. If the error signal of each node is computed, the weight of a 

neural network is modified through the error signal. The reason why the value of an error 

signal is different according to the value of L_ReLU is because differential value is changed 

according to the value of L_ReLU function.  

Formula (26) shows that the weight between the last hidden layer and an output layer is 

modified, Formula(27) shows that the weight from the last hidden layer to the 1st hidden layer 

is modified and Formula(28) shows that the weight between the 1st hidden layer and an input 

layer is modified. 

 

    
      

      
  
       (26) 

    
        

        
     

       (27) 

    
      

      
          (28) 

 

Here, u represents a hidden layer number and the learning process continues till Error is 

less than Errormax.  

4. The performance Analysis 

In this section, the performance analysis on the PSM of the DLPP is done. The PSM is 

analyzed in terms of accuracy and Operation time. Table 1 shows a PC environment used for 

the performance analysis.  

 
Table 1. The Experimental Environment of the DLPP 

CPU GPU RAM OS 

Intel i5-7400 Geforce GTX 1050 SAMSUNG DDR4 8GB Window 10 Education 

 

Under the same experimental condition, the CNN, MLP and PSM performance on 

Operation time and accuracy is analyzed in this section. The 1
st
 experiment shows that the 

Operation time of 3 neural network models is measured according to the count of test data sets 

and Fig. 10 shows the Operation time as the count of training data sets gets increased from 200 

to 900. 
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Fig. 10. Operlation time performance analysis of PSM 

In case of the CNN, The shortest Operation time is 1.20ms when 250 sets are used and the 

longest Operation time is 1.28ms when 900 sets are used. Therefore, the average Operation 

time of the CNN is about 1.24ms. In case of the MLP, the shortest Operation time is 1.27ms 

when 200 sets are used and the longest Operation time is 1.47ms when 900 sets are used. 

Therefore, the average Operation time of the MLP is about 1.47ms. In case of the PSM, The 

shortest Operation time is 1.51ms when 250 sets are used and the longest Operation time is 

1.63ms when 900 sets are used. Therefore, the average Operation time of the PSM is about 

1.57ms.Therefore, the PSM is slower by about 0.19ms than the CNN and 0.1ms than the MLP 

in term of the Operation time. 

  

Fig. 11. Accuracy performance analysis of PSM 

The 2
nd

 experiment compares 3 neural network models in terms of accuracy as test data 

sets get increased from 500 to 2000 in Fig. 11. In case of the CNN, the accuracy is 95.8% 

when 500 sets are used, 94.14% when 700 sets are used, 91.75% when 1200 sets are used and 

87.8% when 2,000 sets are used. In case of the MLP, the accuracy is 92.8% when 500 sets are 

used, 90.96% when 700 sets are used, 92.15% when 1200 sets are used and 91.68% when 

2,000 sets are used. In case of the PSM, the accuracy is 88.30.8% when 500 sets are used, 

92.7% when 700 sets are used, 94.35% when 1200 sets are used and 96.23% when 2,000 sets 

are used.   

When 500 sets are used, the accuracy of the PSM is lower by 7% than that of the CNN 

and by 4% than that of the MLP. However, when more sets than 900 are used, the accuracy of 

the PSM gets higher than that of the CNN and MLP. When 2000 test sets are used, the 

accuracy of the PSM is higher by about 9% than that of the CNN by about 5% than that of the 

MLP. This experiment shows that the accuracy of the PSM gets more increased as the count of 

data sets gets larger. 
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Finally, the CNN has about 0.2ms faster operation time and about 7% lower accuracy 

than the PSM and the MLP has about 0.1ms faster operation time and about 4% lower 

accuracy than the PSM. Because there is little difference among them in operation time, the 

PSM with higher accuracy are more suitable for vehicle diagnosis than these two neural 

network models. 

5. Conclusion 

This paper proposes a Deep Learning Part-diagnosis Platform(DLPP) based on an 

In-vehicle On-board gateway for an Autonomous Vehicle. It  diagnoses not only the parts of a 

vehicle and the sensors belonging to the parts, but also the influence upon other parts when a 

certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part 

Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the 

translation of messages happening in a vehicle, the IOG not only has the translation function of 

an existing gateway but also judges whether a fault happened in a sensor or parts by using a  

Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred 

to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by 

using the payloads transferred from the IOG.  

 The experiments of the DLPP were done to verify the efficiency. The PSM took longer 

by about 0.2ms than the CNN  and about 0.1ms than the MLP in Operation time, but improved 

the accuracy higher by about 9% than the CNN and about 5% than the MLP. In the 

experiment, because the difference value of the Operation time is very small, it can be ignored. 

The PSM can be selected in terms of accuracy, compared to the CNN and MLP. Therefore, the 

DLPP can do a detailed self-diagnoses between parts and sensors and diagnose the influence 

upon other parts because of a part`s fault. In addition, If a fault happens to only a sensor, the 

DLPP has an advantage that just the sensor  belonging to  a part can be replaced, not to replace 

the part. Because of this advantage, the DLPP has an economic effect and prevents an accident 

in advance. 
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