• Title/Summary/Keyword: Vehicle Emission

Search Result 705, Processing Time 0.026 seconds

Development and Application of Real-time Measurement System of Silt Loading for Estimating the Emission Factor of Resuspended Dust from Paved Road (포장도로 재비산먼지 배출계수 산정을 위한 silt loading의 실시간 측정시스템 개발과 적용)

  • Han, Se-Hyun;Won, Kyung-Ho;Jang, Ki-Won;Son, Young-Min;Kim, Jeong-Suk;Hong, Ji-Hyung;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.596-611
    • /
    • 2007
  • Resuspended dust from paved roads in Seoul and Incheon metropolitan areas is regarded as one of the major $PM_{10}$ sources in these areas, according to the recent emission estimates using the emission factors compiled in AP-42. It is well known that the AP-42 model for estimating $PM_{10}$ emissions from paved roads requires information on silt loadings of particular paved roads. The conventional AP-42 method (vacuum swept method) for road silt sampling, however, is expensive, time consuming, and dangerous. These drawbacks led us to develop a Mobile Dust Monitoring System (MDMS) capable of doing real time measurements of silt loading of paved roads, thereby we could get higher resolution silt loading data both in terms of time and space without too much human efforts and danger. In this study, for the real-time measurement of silt loading of paved roads, the principle used in the TRAKER method of U.S. Desert Research Institute was employed and the entire sampling systems including data acquisition system were designed for theses purpose and mounted on a SUV. The correlation between the silt loading measured by vacuum swept method and the speed corrected ${\Delta}Dust$ was derived for the vehicle-based silt loading measurements, and then the variations of silt loading on paved roads were surveyed using the MDMS in test routes of Seoul and Incheon. From the results of real-time measurements, temporal and spatial variations of silt loading data together with the existence of hot spots were observed for paved roads in Seoul and Incheon. The result of this study will be employed to estimate fugitive dust emissions from paved roads.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Development of a Fuel-Efficient Driving Strategy in Horizontal Curve Section (평면곡선부 구간에서의 연료효율적 주행전략 개발)

  • Jeong, Yangrok;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.77-84
    • /
    • 2016
  • In 2012, total GHG emissions in transport sector reached 88 Million ton CO2eq. The emissions generated in the road accounted for 94% of the transport sector. Currently, there are many efforts to operate an education and campaign for eco-driving. However study for eco-friendly vehicle control considering road alignment is limited. Therefore, the purpose of this study is to address fuel-efficient driving strategy in horizontal curve section. To fulfill the goal, designed ideal freeway horizontal curve road follows regulations about road structure. And safety speed is calculated for considering vehicle's safety on horizontal curve road. Authors composed the acceleration and deceleration scenario for each horizontal curve section and generated the speed profiles that are limited by the safety speed. Speed profiles are converted into force that horizontal curve affect to fuel consumption. Then, we calculated fuel consumption using Comprehensive Modal Emission Model. Then, we developed eco-driving strategy by selecting most fuel-efficient scenario. To validate this strategy, we selected study site and compared fuel consumption for eco and manual driving. As the result, fuel consumption when driver used eco-driving was lessened by 20.73% than that of manual driving.

Study on Improving the Environmental Performance of a Railway Vehicle through a Life Cycle Assessment of the Tilting Train (틸팅열차의 전과정평가를 통한 철도차량 환경성 개선방안연구)

  • Lee, Cheul Kyu;Kim, Yong-Ki;Lee, Jae-Young;Choi, Yo-Han;Kim, Cho-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Recent international environmental regulations are focused on reducing pre-contamination and on sustainable development prior to the usage stage of a product. The Environmental Performance Declaration is being used as a tool for quantifying the environmental performance of products, to reduce contamination in advance, and for advertising the results of railway vehicles in Europe. In this study, a life cycle assessment of the tilting train was conducted, the first such case study in Korea, according to the ISO 14025 standard and Korea EDP (Environmental Declaration of the Product) rule. As a result of the LCA, the life cycle carbon emission of the tilting train was determined to be $3.54{\times}10^7kgCO_2eq.$ which is higher than that of a European train. Also, the amount of $CO_2$ emission of the Mcp and car body is higher than that of the other car and bogie.

Investment Benefit Analysis of Safety Assessment and Inspection Technologies of Hydrogen Bus Fuel System Using Contingent Valuation Methods (조건부가치측정법을 이용한 수소버스 연료장치 안전성 평가 및 검사기술에 대한 투자 편익 분석)

  • Seohyun, Lim;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2022
  • Recently, the government has been expanding the supply of hydrogen vehicles according to the roadmap for vitalizing the hydrogen economy, but is developing safety assessment and inspection technology for the relevant vehicles. This study analyzed the prevention of hydrogen bus accidents' economic effect that arises from the application and development of large-capacity CHSS oil pressure repetition-test assessment technology, hydrogen bus internal chamber pressure transmission and emission volume inspection technology, among various technologies capable of assessing the safety of a hydrogen bus fuel system. To this end, the contingent valuation method (CVM), one of the value evaluation methods of non-market goods, was applied to investigate users' willingness to pay for each inspection technology. The survey for users' willingness to pay was conducted by attaching posters to promote surveys on the internet and within buses to the entire public. As a result of the analysis, the average WTP of the hydrogen bus internal chamber pressure transmission volume inspection technology was 25.3 KRW, the average WTP of the hydrogen bus internal chamber pressure emission volume inspection technology was 18.6 KRW, and the average WTP of the large-capacity CHSS oil pressure repetition-test assessment technology was measured at 16.7 KRW. In addition, the costs and benefits of the introduction of the relevant inspection technology were defined through the interviewing of experts at related research institutions and businesses. As a result of conducting an economic analysis (4.5% discount rate) according to the development of each inspection technology, economic feasibility was seen in all assessment and inspection technologies. As much as the technology is indispensable for the safe use of hydrogen buses, it shows that investment in related technology is very necessary in the future. However, because it was decided that the relevant analysis will differ according to the distribution rate of hydrogen buses, further analysis following this future distribution rate of hydrogen buses is needed, and future users should be made clearly aware of the safety and environmental nature of the technology.

Economics Approach on Validity of CNG Bus Promotion Policy (천연가스(CNG)버스 보급정책의 타당성 제고를 위한 연구)

  • Shin, Won Shik
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.114-123
    • /
    • 2018
  • As recognizing the necessity of eco-friendly vehicles in order to reduce air pollution from road sector, Korean government has established and implemented a promotion policy which is encouraging the public transportation companies to purchase CNG buses in replacing diesel buses since 2000s. With CNG bus promotion policy, the number of CNG buses had been increased on the road of metropolitan area and big cities. However, increasing rate of CNG buses had been fluctuated between the decrease and the increase since year 2014. In this study, the impact of fuel cost competitiveness between diesel and CNG on CNG bus increasing volume was testified by simple regression, which was only assumed by precedent research on the CNG promotion policy. And this study suggested the necessity of harmonization among the related policies conducted by related Ministries. Eventually this study should contribute to enhance the validity of CNG bus promotion policy. And it is expected that Korean government should apply the new policy suggestion of this study in the establishment of government's promotion policy on LNG cargo trucks and Zero Emission Vehicles in the future.

On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel) (Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

MEASUREMENT OF OPERATIONAL ACTIVITY FOR NONROAD DIESEL CONSTRUCTION EQUIPMENT

  • HUAI T.;SHAH S. D.;DURBIN T. D.;NORBECK J. M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.333-340
    • /
    • 2005
  • In order to better quantify the contribution from nonroad sources to emission inventories, it is important to understand not only the emissions rates of these engines but also activity patterns that can be used to accurately portray their in-use operation. To date, however, very little information is available on the actual activity patterns of nonroad equipment. In this study, a total of 18 pieces of nonroad equipment were instrumented with collected data including intake manifold air pressure (MAP), exhaust temperature and, on a subset of vehicles, engine rpm and throttle position. The equipment included backhoes, compactors, dozers, motor graders, loaders and scrappers used in applications such as landfilling, street maintenance and general roadwork. The activity patterns varied considerably depending on the type of equipment and the application. Daily equipment operating time ranged from less than 30 minutes to more than 8 hours, with landfill equipment having the highest daily use. The number of engine starts per day ranged from 3-11 lover the fleet with an average of 5 starts per day. The average percent idle time for the fleet was approximately $25\%$ with a range from 11 to $65\%$ for individual pieces of equipment. Duty cycles based on exhaust temperature/throttle position profiles were also developed for two graders and one dozer.

A Study on Hazardous Air Pollutant Emissions From Diesel Engines Utilizing DME Fuel (DME를 이용한 경유자동차의 유해대기오염물질 발생 특성 연구)

  • Lim, Yun-Sung;Seo, Choong-Youl;Kwack, Soon-Chul;Lee, Jong-Tae;Park, Jung-Min;Kang, Dae-Il;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Duk;Lim, Yui-Soon;Dong, Jong-In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • Recently, lots of researchers have been attracted to develop various alternative fuels and to use renewable fuels in order to solve the exhaust emission problems. DME (Dimethylether) is synthetic fuel, and can be produced from natural gas, coal and biomass. The emission is clean because it contains little sulfur and aromatic components In this study, the fuel was tested to investigate the applicability as an alternative fuel for diesel. This study was carried out by comparing the exhaust emissions and performance of diesel engine with DME, ULSD (ultra low sulfur diesel), LSD (low sulfur diesel) respectively. In order to measure regulated emissions, CO, $NO_{3}$, HC from vehicle different fuel types were used on chassis dynamometer CVS (constant volume sampler)-75 mode and EPA TO-I1A method was chosen for aldehydes analysis.

A Study on Commercialization Feasibility of HCNG Engine in Emissions Characteristics (HCNG 엔진의 배출가스 특성에 따른 상용화 타당성 연구)

  • Park, Cheolwoong;Kim, Changgi;Choi, Young;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Using natural gas-hydrogen blended fuel (HCNG) in a heavy duty vehicle is regarded as an alternative to meet reinforced emission regulation compared to a recent direct injection (DI) diesel engine. Hydrogen can lead stable lean combustion even under leaner mixture condition than natural gas, so that improving not only thermal efficiency but also $NO_x$ emissions. In the present study, the feasibility of HCNG engine's commercialization was accessed with HCNG fuel (30% $H_2$ and 70% natural gas) in aspect to the reliability and possibility to reduce $NO_x$ emissions by the level of EURO-VI under various operating conditions.