• 제목/요약/키워드: Vehicle Emission

Search Result 705, Processing Time 0.023 seconds

INVESTIGATION OF EMISSION RATES OF AMMONIA, NITROUS OXIDE AND OTHER EXHAUST COMPOUNDS FROM ALTERNATIVE- FUEL VEHICLES USING A CHASSIS DYNAMOMETER

  • Huai, T.;Durbin, T.-D.;Rhee, S.-H.;Norbeck, J.-M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Exhaust emissions were characterized for a fleet of 10 alternative-fuel vehicles (AFVx) including 5 compressed natural gas (CNG) vehicles. 3 liquefied petroleum gas (LPG) vehicles and 2 85% methanol/15% California Phase 2 gasoline (M85) vehicles. In addition to the standard regulated emissions and detailed speciation of organic gas compounds, Fourier Transform Infrared Spectroscopy (FTIR) was used to measure ammonia (NH$_3$) and nitrous oxide ($N_2$O) emissions. NH$_3$, emissions averaged 0.124 g/mi for the vehicle fleet with a range from <0.004 to 0.540 g/mi. $N_2$O emissions averaged 0.022 g/mi over the vehicle fleet with range from <0.002 to 0.077 g/mi. Modal emissions showed that both NH$_3$, and $N_2$O emissions began during catalyst light-off and continued as the catalyst reached its operating temperature. $N_2$O emissions primarily were formed during the initial stages of catalyst light-off. Detailed speciation measurements showed that the principal component of the fuel was also the primary organic gas species found in the exhaust. In particular, methane, propane and methanol composed on average 93%, 79%, and 75% of the organic gas emissions, respectively, for the CNG, LPG. and M85 vehicles.

Development of Map-Based Engine Control Logic for DME Fuel (MAP 기반 DME용 엔진 제어로직 개발)

  • Park, Young-Kug;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3127-3134
    • /
    • 2013
  • This paper presents the verified results from the examination of the control algorithm, logic composition, and vehicle condition of the engine that has been adapted for DME fuel. It introduces the development process of the control structure and the logic control based on control map and auto-code generation, and finally verifies the reliability and performance of the overall control. The control structure largely consists of the injection control part that implements driver demand into an engine net torque and the air control system part that satisfies characteristics of exhaust gas and power performance. The control logic is designed with feedforward and feedback control for each of its control functions for an enhanced response. Moreover, the control map of the feedforward controller is created by the use of an engine model created by test data of mass product diesel engine, and it was subsequently calibrated in the test process of the engine and vehicle state. A test mode was completed by attaching the developed controller to the vehicle, and a reduction in gas emission is confirmed by the calibration of EGR, VGT, and injection times.

An Economic Feasibility Analysis of a Hydrogen Fuel-Cell Vehicle Considering GHG (GHG를 고려한 수소연료전지 자동차의 경제성 분석)

  • Yang, Moon-Hee;Gim, Bong-Jin;Kim, Jong-Wook
    • New & Renewable Energy
    • /
    • v.1 no.3 s.3
    • /
    • pp.42-50
    • /
    • 2005
  • This paper deals with the economic feasibility model and analysis of a hydrogen fuel-cell vehicle [FCV] against two similar types of non-business vehicles fueled with gasoline [GV] and diesel [DV] considering greenhouse gas [GHG]. Considering the price of vehicles and annual operating cost, we build a classical economic feasibility model. Since the economic feasibility could be affected by many input factors such as the prices of vehicles, the price of fuels, annual driving distance and so on, we estimate the average future values of input factors, which is defined as "the average case". Based on the average case, we assess the representative economic feasibility of a FCV with/without GHG, and by changing various annual driving distances, we assess its economy in terms of net-present value, internal rate of return, and payback period. In addition, we make some sensitivity analysis of its economic feasibility by changing the values of the critical input factors one at time. Based on the average case, it turns out that the consumer of a FCV could save 25,000 won/year for a GV, but the consumer could pay 120,000 won/year more for a DV. This indicates that gasoline vehicles could be replaced gradually by FCVs in Korean market which might be formed by those consumers driving annually more than approximately 14,800 km. As the results of our sensitivity analysis, it turns out that a FCV is no more economical if the difference of the prices between FCV and GV is more than 10,130,000 won or the price of hydrogen fuel could be more than 5,136 won/kg.

  • PDF

Preliminary Source Apportionment of Ambient VOCs Measured in Seoul Metropolitan Area by Positive Matrix Factorization (PMF를 이용한 수도권지역 VOCs의 배출원 추정)

  • Han J. S.;Moon K. J.;Kim R. H.;Shin S. A.;Hong Y. D.;Jung I. R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.85-97
    • /
    • 2006
  • The PAMS data collected at four sites in Seoul metropolitan area in 2004 were analyzed using the positive matrix factorization (PMF) technique, in order to identify the possible sources and estimate their contributions to ambient VOCs. Ten sources were then resolved at Jeongdong, Bulgwang, Yangpyeong, and Seokmo, including vehicle exhaust, LPG vehicle, petroleum evaporation, coating, solvent, asphalt, LNG, Industry & heating, open burning, and biogenic source. The PMF analysis results showed that vehicle exhaust commonly contributed the largest portion of the predicted total VOCs mass concentration, more than $30\%$ at four sites. The contribution of other resolved sources were significantly different according to the characteristics of site location. In the case of Jeongdong and bulgwang located in urban area, various anthropogenic sources such as coating, solvent, asphalt, residual LPG, and petroleum evaporation contributed about $40\%$ of total VOCs mass. On the other hand, at yangpyeong and Seokmo located in rural and remote area, the portion of these anthropogenic sources was reduced to less than $30\%$ and the contribution of natural sources including open burning and biogenic source clearly observed. These results were considerably corresponding to the emission inventory investigated in this region.

Characteristics of Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in a Large Urban Area (대도시 교통밀집지역 도로변 대기 중 휘발성유기화합물의 농도분포 특성)

  • 백성옥;김미현;박상곤
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.113-126
    • /
    • 2002
  • This study was carried out to evaluate the temporal (daily, weekly, and seasonal) variations of volatile organic compounds (VOCs) concentrations at a road-side site in a heavy-traffic central area of Metropolitan Taegu. Ambient air sampling was undertaken continuously for 14 consecutive days in each of four seasons from the spring of 1999 to the winter of 2000. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. A total of 10 aromatic VOCs of environmental concern were determined, including benzene, toluene, ethylbenzene, m+p-xylenes, styrene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene. Among 10 target VOCs, the most abundant compounds appeared to be toluene (1.5 ∼ 102 ppb) and xylenes (0.1 ∼ 114 ppb), while benzene levels were in the range of 0.3 ∼6 ppb. It was found that the general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours (AM 7∼9 and PM 7 ∼9). However, some VOCs such as toluene, xylenes, and ethylbenzene were likely to be affected by a number of unknown sources other than vehicle exhaust, being attributed to the use of paints, and/or the evaporation of solvents used nearby the sampling site. In some instances, extremely high concentrations were found for these compounds, which can not be explained solely by the impact of vehicle exhaust. The results of this study may be useful for estimating the relative importance of different emission sources in large urban areas. Finally, it was suggested that the median value might be more desirable than the arithmetic mean as a representative value for the VOC data group, since the cumulative probability distribution (n=658) does not follow the normal distribution pattern.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.

Aerosol Emission from Road by Livestock Transport Vehicle Movement (축산관련차량 이동에 따른 도로의 에어로졸 발생량 분석)

  • Seo, Il-Hwan;Lee, In-Bok;Hwang, Hyun-Seob;Bae, Yeon-Jeong;Bae, Seung-Jong;Moon, Oun-Kyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.137-147
    • /
    • 2013
  • Most of livestock houses are concentrated in certain area with mass rearing system resulting in rapid spread of infectious diseases such as HPAI (highly pathogenic avian influenza). The livestock-related vehicles which frequently travel between farms could be a major factor for disease spread by means of transmission of airborne aerosol including pathogens. This study was focused on the quantitative measurement of aerosol concentration by field experiment while vehicles were passing through the road. The TSP (total suspended particle) and PM10 (particle matter) were measured using air sampler with teflon filter installed downward the road with consideration of weather forecast and the direction of road. And aerosol spectrometer and video recorders were also used to measure the real-time distribution of aerosol concentration by its size. The results showed that PM2.5 was not considerable for transmission of airborne aerosol from the livestock-related vehicle. The mass generated from the road during the vehicle movement was measured and calculated to 241.4 ${\mu}g/m^3$ by means of the difference between TSP and PM2.5. The dispersion distance was predicted by 79.6 m from the trend curve.

Well-to-Wheel Greenhouse Gas Emissions Analysis of Hydrogen Fuel Cell Vehicle - Hydrogen Produced by Naphtha Cracking (나프타 기반 수소 연료전지 자동차의 전과정 온실가스 발생량 분석)

  • Kim, Myoungsoo;Yoo, Eunji;Song, Han Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • The Fuel Cell Electric Vehicle(FCEV) is recently evolving into a new trend in the automobile industry due to its relatively higher efficiency and zero greenhouse gas(GHG) emission in the tailpipe, as compared to that of the conventional internal combustion engine vehicles. However, it is important to analyze the whole process of the hydrogen's life cycle(from extraction of feedstock to vehicle operation) in order to evaluate the environmental impact of introducing FCEV upon recognizing that the hydrogen fuel, which is used in the fuel cell stack, is not directly available from nature, but instead, it should be produced from naturally available resources. Among the various hydrogen production methods, ${\sim}54.1%^{8)}$ of marketed hydrogen in Korea is produced from naphtha cracking process in the petrochemical industry. Therefore, in this study, we performed a well-to-wheels(WTW) analysis on the hydrogen fuel cycle for the FCEV application by using the GREET program from the US Argonne National Laboratory with Korean specific data. As a result, the well-to-tank and well-to-wheel GHG emissions of the FCEV are calculated as 45,638-51,472 g $CO_2eq/GJ$ and 65.0-73.4 g $CO_2eq/km$, respectively

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

Numerical Study on the Impact of Power Plants on Primary PM10 Concentrations in South Korea

  • Park, Il-Soo;Song, Chang-Keun;Park, Moon-Soo;Kim, Byung-Gon;Jang, Yu-Woon;Ha, Sang-Sub;Jang, Su-Hwan;Chung, Kyung-Won;Lee, Hyo-Jung;Lee, Uh-Jeong;Kim, Sang-Kyun;Kim, Cheol-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.255-273
    • /
    • 2018
  • To develop effective emission abatement strategies for eighteen coal-fired power plants located throughout Korea, power plant emission data and TAPM (The Air Pollution Model) were used to quantify the impact of emission reductions on primary $PM_{10}$ concentrations. TAPM was validated for two separate time periods: a high $PM_{10}$ concentration period from April 7 to 12, 2016, and a low $PM_{10}$ concentration period from June 1 to June 6 2016. The validated model was then used to analyze the impacts of five applicable power plant shut-down scenarios. The results showed that shut-down of four power plants located within the Seoul metropolitan area (SMA) would result in up to 18.9% reduction in maximum $PM_{10}$ concentrations, depending on synoptic conditions. A scenario for the shutdown of a single low stack height with highest-emission power plant located nearest to Seoul showed a small impact on averaged $PM_{10}$ concentrations (~1%) and 4.4% ($0.54{\mu}g/m^3$) decrease in maximum concentration. The scenario for four shutdowns for power plants aged more than 30 years within SMA also showed a highest improvement of 6.4% ($0.26{\mu}g/m^3$ in April) in averaged $PM_{10}$ concentrations, and of 18.9% ($2.33{\mu}g/m^3$ in June) in maximum concentration, showing almost linear relationship in and around SMA. Reducing gaseous air pollutant emissions was also found to be significant in controlling high $PM_{10}$ concentrations, indicating the effectiveness of coreduction of power plant emissions together with diesel vehicle emissions in the SMA. In addition, this study is implying that secondary production process generating $PM_{10}$ pollution may be a significant process throughout most regions in Korea, and therefore concurrent abatement of both gas and particle emissions will result in more pronounced improvements in air quality over the urban cities in South Korea.