• 제목/요약/키워드: Vehicle Distance Recognition

검색결과 71건 처리시간 0.024초

Intention Recognition Using Case-base Learning in Human Vehicle

  • Yamaguchi, Toru;Dayaong, Chen;Takeda, Yasuhiro;Jing, Jianping
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.110-113
    • /
    • 2003
  • Most traffic accidents are caused by drivers' carelessness and lack of information on the surrounding objects. In this paper we proposed a model of human intention recognition through case-base learning and to build up an experiment system. The system can help us recognize object's intention (e.g. turn left, turn right or straight) by using detected data about human's motion, speed of the car and the distance between the car and the intersection. Furthermore, we included an example using case-base learning in this paper to improve the precision of recognition as well as an example to explain the use of the system. PC can be used to predict the driving reaction beforehand and send a warning signal to the driver in time if there is any danger.

  • PDF

상대거리 지문 정보를 이용한 무인이송차량의 주행 경로 제어 (A Moving Path Control of an Automatic Guided Vehicle Using Relative Distance Fingerprinting)

  • 홍윤식;김다정;홍상현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제2권10호
    • /
    • pp.427-436
    • /
    • 2013
  • 본 논문에서는 실내에서 비전센서를 이용한 마커 영상 인식을 통해 무인이송차량(AGV)의 주행 경로를 제어하는 방안을 제안한다. 적외선센서와 랜드마크를 이용한 AGV 주행 제어 시스템의 경우 실내로 투과되어 들어 온 햇빛으로 인해 적외선 센싱 결과를 제대로 인식하지 못하는 공간이 발생하는 점과 작업 공간이 협소할 경우 랜드마크를 이용한 주행 경로 제어가 어려운 상황이 발생하였다. 이처럼 WSN 환경에서 센싱정보를 획득하지 못하는 상황을 보완할 수 있는 방안으로 마커와 AGV 간 상대 거리 정보를 지문 정보로 활용하는 방안을 제안한다. 무선신호 수신세기(RSS)를 지문으로 사용하는 방식에 비해 마커 영상 이미지 크기를 지문으로 사용하면 상대적으로 신뢰도가 높은 위치 정보를 획득할 수 있다. 모형 AGV를 이용한 다양한 실험을 통해 상대 거리 정보를 지문으로 사용하는 방안의 타당성을 입증하였다. 본 논문의 연구 결과는 화장장에서 시신을 운구하는 무인이송차량 시스템에 적용될 것이다.

딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정 (Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning)

  • 김현우;박상현
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

복합형 카메라 시스템을 이용한 자율주행 차량 플랫폼 (Autonomous Driving Platform using Hybrid Camera System)

  • 이은경
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1307-1312
    • /
    • 2023
  • 본 논문에서는 자율주행 인지 기술의 핵심 요소인 객체 인식과 거리 측정을 위해 서로 다른 초점거리를 가진 다시점 카메라와 라이다(LiDAR) 센서를 결합한 복합형 카메라 시스템을 제안한다. 제안한 복합형 카메라 시스템을 이용해 장면 안의 객체를 추출하고, 추출한 객체의 정확한 위치와 거리 정보를 생성한다. 빠른 계산 속도와 높은 정확도, 실시간 처리가 가능하다는 장점 때문에 자율주행 분야에서 많이 사용하고 있는 YOLO7 알고리즘을 이용해 장면 안의 객체를 추출한다. 그리고 객체의 위치와 거리 정보를 생성하기 위해 다시점 카메라를 이용해 깊이맵을 생성한다. 마지막으로 거리 정확도를 향상시키기 위해 라이다 센서에서 획득한 3차원 거리 정보와 생성한 깊이맵을 하나로 결합한다. 본 논문에서는 제안한 복합형 카메라 시스템을 기반으로 주행중인 주변 환경을 더욱 정확하게 인식함과 동시에 3차원 공간상의 정확한 위치와 거리 정보까지 생성할 수 있는 자율주행 차량 플랫폼을 제안하였으며, 이를 통해 자율주행 차량의 안전성과 효율성을 향상시킬 수 있을 것으로 기대한다.

컴퓨터 시뮬레이션을 이용한 변환빔 전조등 조사거리에 관한 연구 (Analysis of the Irradiation Distance of Dipped-beam Headlamps Using Computer Simulation)

  • 조현율;이호상;용부중;우현구
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.159-165
    • /
    • 2013
  • One of the leading causes of night time automobile accidents is the darkness of surroundings. Headlamps play a critical role in casting light and providing drivers with visibility. Headlamp design and new technology have been developed recently as research has been actively carried out to increase headlamp recognition. This study statistically analyzes irradiation distance using computer simulation by categorizing headlamps applied in domestic automobiles in the last decade by year, light source, form, vehicle type, and height of installation. After analyzing results of irradiation distance, it appears irradiation distance has been increased by approximately 10m in the last decade. This increase in irradiation distance is predicted to decrease night time accidents by allowing more time to recognize potential causes of accidents.

조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법 (Illumination-Robust Load Lane Color Recognition based on S-color Space)

  • 백승해;김염;이근모;박순용
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.434-442
    • /
    • 2018
  • 본 논문에서는 주행하는 차량에 탑재된 카메라에서 획득한 도로 영상에서 차선의 색상을 판별하는 방법을 제안하였다. 자동차의 자율주행기술에 있어 차선 정보는 차선이탈방지(ldws), 능동적 차선유지(lkas), 고속도로주행보조(hda) 등의 자율주행의 레벨(level)이 올라갈수록 중요하다. 특히 차선의 색상, 특히 흰색 및 황색 차선의 구별은 교통사고와 직접적인 관련이 있는 정보이기에 더욱 필요한 기술이다. 본 논문에서는 주행 차선 검출 결과를 기반으로 차선 및 도로의 관심 영역을 추출하고 각 영역의 컬러 정보를 2차원 S-색상 공간으로 투영하였다. S-공간에 투영된 색상의 특징 분포에서 개선된 mean-shift 알고리즘을 이용하여 특징의 무게중심을 구하였다. 좌, 우 차선과 도로영역의 색상특징의 중심점들 사이의 거리 정보를 이용하여 차선의 색상을 판별하였다. 다양한 조명환경에서 약 97%의 색상 인식 성공률을 보였다.

보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구 (A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection)

  • 조성윤;윤여환
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.197-205
    • /
    • 2024
  • 자율주행 자동차 개발 및 상용화에 있어서 주행안전도 확보가 가장 중요한 시점에서 이를 위해 전방 및 주행차량 주변에 존재하는 다양한 정적/동적 차량의 인식과 검출 성능을 고도화 및 최적화하기 위한 AI, 빅데이터 기반 알고리즘개발 등이 연구되고 있다. 하지만 레이더와 카메라의 고유한 장점을 활용하여 동일한 차량으로 인식하기 위한 연구 사례들이 많이 있지만, 딥러닝 영상 처리 기술을 이용하지 않거나, 레이더의 성능상의 문제로 짧은 거리만 동일한 표적으로 감지하고 있다. 따라서 레이더 장비와 카메라 장비에서 수집할 수 있는 데이터셋을 구성하고, 데이터셋의 오차를 계산하여 동일한 표적으로 인식하는 융합 기반 차량 인식 방법이 필요하다. 본 논문에서는 레이더와 CCTV(영상) 설치 위치에 따라 동일한 객체로 판단하기에 데이터 오차가 발생하기 때문에 설치한 위치에 따라 위치 정보를 연동할 수 있는 기술 개발을 목표로 한다.

실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발 (Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods)

  • 서은빈;이승기;여호영;신관준;최경호;임용섭
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

영상기반 차량 후미등 상태 인식 알고리즘 (Video Based Tail-Lights Status Recognition Algorithm)

  • 김규영;이근후;도진규;박근수;박장식
    • 한국전자통신학회논문지
    • /
    • 제8권10호
    • /
    • pp.1443-1449
    • /
    • 2013
  • 전방 차량의 자동검출은 충돌회피, 자동운행제어 그리고 자동 헤드램프 조정 등의 고급 운전지원시스템의 통합 요소이다. 주야간 상관없이 전방 차량 자동 검출과 운행 상태를 인지하는데 있어 후미등은 중요한 역할한다. 그런데, 많은 운전자들이 차량의 후미등 상태를 알지 못하고 운행하는 경우가 많다. 따라서, 후미등에 이상이 있는 차량에 대하여 자동으로 후미등 이상 상태를 알려주는 시스템이 필요하다. 본 논문에서는 영상처리 및 인식기술을 기반으로 차량의 후미등 상태를 인식하는 방법을 제안한다. 톨게이트 등으로 진입하는 차량을 검출하기 위하여 배경추정기법, 옵티컬 플로우(optical flow) 그리고 Euclidean 척도를 이용한다. Lab 색좌표에서 집중 맵(saliency map)을 적용하여 차량에서 후미등 영역을 검출하고 상태를 판정한다. 고속도로 톨게이트 영상을 이용하여 후미등 상태인식 실험을 하고, 제안하는 방법이 운전자에게 후미등 상태 전달하는데 활용할 수 있음을 보인다.

스테레오 비전 기반의 이동객체용 실시간 환경 인식 시스템 (Investigation on the Real-Time Environment Recognition System Based on Stereo Vision for Moving Object)

  • 이충희;임영철;권순;이종훈
    • 대한임베디드공학회논문지
    • /
    • 제3권3호
    • /
    • pp.143-150
    • /
    • 2008
  • In this paper, we investigate a real-time environment recognition system based on stereo vision for moving object. This system consists of stereo matching, obstacle detection and distance estimation. In stereo matching part, depth maps can be obtained real road images captured adjustable baseline stereo vision system using belief propagation(BP) algorithm. In detection part, various obstacles are detected using only depth map in case of both v-disparity and column detection method under the real road environment. Finally in estimation part, asymmetric parabola fitting with NCC method improves estimation of obstacle detection. This stereo vision system can be applied to many applications such as unmanned vehicle and robot.

  • PDF