Most traffic accidents are caused by drivers' carelessness and lack of information on the surrounding objects. In this paper we proposed a model of human intention recognition through case-base learning and to build up an experiment system. The system can help us recognize object's intention (e.g. turn left, turn right or straight) by using detected data about human's motion, speed of the car and the distance between the car and the intersection. Furthermore, we included an example using case-base learning in this paper to improve the precision of recognition as well as an example to explain the use of the system. PC can be used to predict the driving reaction beforehand and send a warning signal to the driver in time if there is any danger.
본 논문에서는 실내에서 비전센서를 이용한 마커 영상 인식을 통해 무인이송차량(AGV)의 주행 경로를 제어하는 방안을 제안한다. 적외선센서와 랜드마크를 이용한 AGV 주행 제어 시스템의 경우 실내로 투과되어 들어 온 햇빛으로 인해 적외선 센싱 결과를 제대로 인식하지 못하는 공간이 발생하는 점과 작업 공간이 협소할 경우 랜드마크를 이용한 주행 경로 제어가 어려운 상황이 발생하였다. 이처럼 WSN 환경에서 센싱정보를 획득하지 못하는 상황을 보완할 수 있는 방안으로 마커와 AGV 간 상대 거리 정보를 지문 정보로 활용하는 방안을 제안한다. 무선신호 수신세기(RSS)를 지문으로 사용하는 방식에 비해 마커 영상 이미지 크기를 지문으로 사용하면 상대적으로 신뢰도가 높은 위치 정보를 획득할 수 있다. 모형 AGV를 이용한 다양한 실험을 통해 상대 거리 정보를 지문으로 사용하는 방안의 타당성을 입증하였다. 본 논문의 연구 결과는 화장장에서 시신을 운구하는 무인이송차량 시스템에 적용될 것이다.
This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.
본 논문에서는 자율주행 인지 기술의 핵심 요소인 객체 인식과 거리 측정을 위해 서로 다른 초점거리를 가진 다시점 카메라와 라이다(LiDAR) 센서를 결합한 복합형 카메라 시스템을 제안한다. 제안한 복합형 카메라 시스템을 이용해 장면 안의 객체를 추출하고, 추출한 객체의 정확한 위치와 거리 정보를 생성한다. 빠른 계산 속도와 높은 정확도, 실시간 처리가 가능하다는 장점 때문에 자율주행 분야에서 많이 사용하고 있는 YOLO7 알고리즘을 이용해 장면 안의 객체를 추출한다. 그리고 객체의 위치와 거리 정보를 생성하기 위해 다시점 카메라를 이용해 깊이맵을 생성한다. 마지막으로 거리 정확도를 향상시키기 위해 라이다 센서에서 획득한 3차원 거리 정보와 생성한 깊이맵을 하나로 결합한다. 본 논문에서는 제안한 복합형 카메라 시스템을 기반으로 주행중인 주변 환경을 더욱 정확하게 인식함과 동시에 3차원 공간상의 정확한 위치와 거리 정보까지 생성할 수 있는 자율주행 차량 플랫폼을 제안하였으며, 이를 통해 자율주행 차량의 안전성과 효율성을 향상시킬 수 있을 것으로 기대한다.
One of the leading causes of night time automobile accidents is the darkness of surroundings. Headlamps play a critical role in casting light and providing drivers with visibility. Headlamp design and new technology have been developed recently as research has been actively carried out to increase headlamp recognition. This study statistically analyzes irradiation distance using computer simulation by categorizing headlamps applied in domestic automobiles in the last decade by year, light source, form, vehicle type, and height of installation. After analyzing results of irradiation distance, it appears irradiation distance has been increased by approximately 10m in the last decade. This increase in irradiation distance is predicted to decrease night time accidents by allowing more time to recognize potential causes of accidents.
본 논문에서는 주행하는 차량에 탑재된 카메라에서 획득한 도로 영상에서 차선의 색상을 판별하는 방법을 제안하였다. 자동차의 자율주행기술에 있어 차선 정보는 차선이탈방지(ldws), 능동적 차선유지(lkas), 고속도로주행보조(hda) 등의 자율주행의 레벨(level)이 올라갈수록 중요하다. 특히 차선의 색상, 특히 흰색 및 황색 차선의 구별은 교통사고와 직접적인 관련이 있는 정보이기에 더욱 필요한 기술이다. 본 논문에서는 주행 차선 검출 결과를 기반으로 차선 및 도로의 관심 영역을 추출하고 각 영역의 컬러 정보를 2차원 S-색상 공간으로 투영하였다. S-공간에 투영된 색상의 특징 분포에서 개선된 mean-shift 알고리즘을 이용하여 특징의 무게중심을 구하였다. 좌, 우 차선과 도로영역의 색상특징의 중심점들 사이의 거리 정보를 이용하여 차선의 색상을 판별하였다. 다양한 조명환경에서 약 97%의 색상 인식 성공률을 보였다.
자율주행 자동차 개발 및 상용화에 있어서 주행안전도 확보가 가장 중요한 시점에서 이를 위해 전방 및 주행차량 주변에 존재하는 다양한 정적/동적 차량의 인식과 검출 성능을 고도화 및 최적화하기 위한 AI, 빅데이터 기반 알고리즘개발 등이 연구되고 있다. 하지만 레이더와 카메라의 고유한 장점을 활용하여 동일한 차량으로 인식하기 위한 연구 사례들이 많이 있지만, 딥러닝 영상 처리 기술을 이용하지 않거나, 레이더의 성능상의 문제로 짧은 거리만 동일한 표적으로 감지하고 있다. 따라서 레이더 장비와 카메라 장비에서 수집할 수 있는 데이터셋을 구성하고, 데이터셋의 오차를 계산하여 동일한 표적으로 인식하는 융합 기반 차량 인식 방법이 필요하다. 본 논문에서는 레이더와 CCTV(영상) 설치 위치에 따라 동일한 객체로 판단하기에 데이터 오차가 발생하기 때문에 설치한 위치에 따라 위치 정보를 연동할 수 있는 기술 개발을 목표로 한다.
In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.
전방 차량의 자동검출은 충돌회피, 자동운행제어 그리고 자동 헤드램프 조정 등의 고급 운전지원시스템의 통합 요소이다. 주야간 상관없이 전방 차량 자동 검출과 운행 상태를 인지하는데 있어 후미등은 중요한 역할한다. 그런데, 많은 운전자들이 차량의 후미등 상태를 알지 못하고 운행하는 경우가 많다. 따라서, 후미등에 이상이 있는 차량에 대하여 자동으로 후미등 이상 상태를 알려주는 시스템이 필요하다. 본 논문에서는 영상처리 및 인식기술을 기반으로 차량의 후미등 상태를 인식하는 방법을 제안한다. 톨게이트 등으로 진입하는 차량을 검출하기 위하여 배경추정기법, 옵티컬 플로우(optical flow) 그리고 Euclidean 척도를 이용한다. Lab 색좌표에서 집중 맵(saliency map)을 적용하여 차량에서 후미등 영역을 검출하고 상태를 판정한다. 고속도로 톨게이트 영상을 이용하여 후미등 상태인식 실험을 하고, 제안하는 방법이 운전자에게 후미등 상태 전달하는데 활용할 수 있음을 보인다.
In this paper, we investigate a real-time environment recognition system based on stereo vision for moving object. This system consists of stereo matching, obstacle detection and distance estimation. In stereo matching part, depth maps can be obtained real road images captured adjustable baseline stereo vision system using belief propagation(BP) algorithm. In detection part, various obstacles are detected using only depth map in case of both v-disparity and column detection method under the real road environment. Finally in estimation part, asymmetric parabola fitting with NCC method improves estimation of obstacle detection. This stereo vision system can be applied to many applications such as unmanned vehicle and robot.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.