• Title/Summary/Keyword: Vehicle Development Process

Search Result 578, Processing Time 0.03 seconds

Application of FRF-Based Substructuring to Optimization of Interior Noise in Vehicle (실차 소음 최적화를 위한 주파수 응답 함수 합성법의 적용)

  • Jung, Won-Tae;Kang, Yeon-June;Kim, Sang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.140-143
    • /
    • 2005
  • The hybrid CAE/CAT methods are widely applied to product development in various fields because this method can predict the response of the whole system when a part of the system is changed. Especially, the hybrid CAE/CAT method is very useful to predict tile vehicle NVH characteristics after changing some parts of the vehicle. Target parts can be established on the basis of test models and FE models of the prototype constructed in the planning stage of car development. In this study, the topic was focused on the proper test-based FBS application process to predict vehicle NVH characteristic. First, the test-based FBS method was apply to vehicle substructure and car-body. And then the test-based model was replaced with FE model to apply hybrid CAE/CAT method. The replaced FE model was modified through the optimization process. The interior noise in vehicle during the drive was predicted with Modified FE model, then the predicted results were verified by experimenting with actual modified model.

  • PDF

The Role of Ergonomics in the Vehicle Development Stage (자동차 개발단계에서의 인간공학의 역할)

  • Seo, Sang-Yeol;Shim, Jun-Youb;Choi, Tae-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.7-16
    • /
    • 2010
  • The great growth and development in the automobile industry have been made at the hardware site consisting of Car over about 100 years. The biggest key of future automobile industry with fierce competition is up to product development with high customer satisfaction through the ergonomics that is applied to car efficiently and effectively. Until Now, The Study of Ergonomics has been used for effective Car design. But At the 21st Century automotive, it will be used for Survival through the differentiation and merchantability of vehicle in highly competitive. That is a big difference. We will review the role of ergonomics in the vehicle development stage with Ssangyong Case.

Development of Risk Management Process for KSLV-I Program (KSLV-I 사업을 위한 위험관리 프로세스 개발)

  • Yoo, Il-Sang;Cho, Kwang-Rae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.94-100
    • /
    • 2006
  • The risk management is an organized method for identifying and measuring risk and for selecting, developing, and implementing options for the handling of risk. The risk management covers all programatic and technical factors which affect the system development performance, cost, and schedule. While technical issues are primary concern for systems engineering, the three elements(performance, cost, and schedule) must be balanced for a successful risk management process. This paper proposes the risk management process for the KSLV-I(Korea Space Launch Vehicle-I) program using computer-aided systems engineering tool, Cradle. The risk management process of KSLV-I program is similar to the general risk management process, but it has its own specific features to manage large-scale complex characteristics of KSLV-I program.

Design Variable Selection and Screening for the Perceived Quality Analysis of Front Visibility in Motor Vehicle Design (운전 자세에서 인지되는 시야 개방감에 대한 영향 변수 추론 및 모형화 방법)

  • Oh, Jin-Wook;Yun, Myung-Hwan
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Understanding consumers' latent desires for product form has now become a critical issue in product design. Accordingly, product development processes is rapidly changing from product-oriented development to user-centered development. Driver visibility is considered as an important element of driving posture packaging in automobile interior design. This study presents a systematic process for driver visibility analysis approached from affective engineering method that provides design variable selection and screening with respect to the image/impression element of the human visibility. Also, the analysis of front visibility, often called the feeling of "openness", in motor vehicle interior design, is selected and practiced a case study using the systematic process proposed in this study. Twenty six participants evaluated the feeling of openness for thirty motor vehicles following the perceived scale of affective design factors. The results showed that variables such as the height of head lining, the height of cluster housing, the gradient of windshield and the volume of A-pillar were the critical design variables which affect the feeling of openness in a motor vehicle.

A Process of the Technical Performance Management for A Space Launch Vehicle R&D Project (우주발사체 개발사업을 위한 기술성능관리 프로세스)

  • Yoo, Il Sang;Cho, Dong Hyun;Kim, Keun Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.71-79
    • /
    • 2014
  • To enhance success probability of a system development project, its overall risk level should be minimized through systematically managing schedules, costs, and technical performances. However, Attempts to manage technical performance compared to numerous efforts to control costs and schedules in such projects are deficient. Particularly, a space launch vehicle, a large complex system, development project is much less likely to meet its technical performance objectives due to its technological difficulty, along with schedule delay and cost overrun. The technical performance management (TPM) is a method for tracking and managing technical progress in order to achieve technical performance targets within schedule and budget. In this paper, we investigate applications of the TPM in several space launch vehicle development projects. Then we propose and validate the TPM process to achieve a successful mission in such projects.

A Study on the Development Process of the Liquid Rocket Engine for the Upper Stage of the Korea Space Launch Vehicle-II (한국형발사체 상단 액체로켓엔진의 개발과정에 대한 고찰)

  • Seo, Kyoun-Su;Park, Soon-Young;Nam, Chang-Ho;Moon, Yoonwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • Upper stage of the Korea Space Launch Vehicle-II(KSLV-II) uses a 7-tons class liquid rocket engine and is an open gas generator cycle with a turbopump supply method that uses kerosene/liquid oxygen as the propellant combination. This study first provided a brief overview of the design and development process of the upper stage engine. In addition, it introduced the solutions and results applied to some of the problems that occurred during the development process of the upper stage engine.

Development of Cryogenic Propellant Filling System for Launch Vehicle (발사체 극저온 추진제 충전시스템 개발)

  • Yu, Byung-Il;Kim, Ji-Hoon;Park, Pyun-Gu;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.676-677
    • /
    • 2010
  • In Naro Space Center, Naro launch vehicle launched 2 times. Launch pad for Naro launch vehicle in Naro space center equipped propellant feeding facility for operating launch process. This paper studied development process and operating method for liquid oxygen filling system of cryogenic propellant systems in launch pad propellant feeding facility.

  • PDF

Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System (SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

Development of a Vehicle Classification Algorithm Using an Inductive Loop Detector on a Freeway (단일 루프 검지기를 이용한 차종 분류 알고리즘 개발)

  • 이승환;조한선;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.135-154
    • /
    • 1996
  • This paper presents a heuristic algorithm for classifying vehicles using a single loop detector. The data used for the development of the algorithm are the frequency variation of a vehicle sensored from the circle-shaped loop detectors which are normal buried beneath the expressway. The pre-processing of data is required for the development of the algorithm that actually consists of two parts. One is both normalization of occupancy time and that with frequency variation, the other is finding of an adaptable number of sample size for each vehicle category and calculation of average value of normalized frequencies along with occupancy time that will be stored for comparison. Then, detected values are compared with those stored data to locate the most fitted pattern. After the normalization process, we developed some frameworks for comparison schemes. The fitted scales used were 10 and 15 frames in occupancy time(X-axis) and 10 and 15 frames in frequency variation (Y-axis). A combination of X-Y 10-15 frame turned out to be the most efficient scale of normalization producing 96 percent correct classification rate for six types of vehicle.

  • PDF