• Title/Summary/Keyword: Vehicle Communication

Search Result 1,855, Processing Time 0.028 seconds

Fundamental Study on Effect of Preceding Vehicle Information on Fuel Consumption Reduction of a Vehicle Group

  • Matsumoto, Shuichi;Kawashima, Hironao
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.173-178
    • /
    • 2013
  • It is a concern that eco-driving vehicles, because their driving behavior differs from other vehicles due to e.g. e-start, may inhibit smooth traffic flow. Therefore, it is necessary to study the cooperative eco-driving done by a vehicle group, putting "vehicle-to-vehicle communication" and "road-to-vehicle communication" into perspective. Based on these factors, this study aimed to: 1) Analyze fuel consumption rates and driving behaviors of more than one vehicle following an Eco-Driving vehicle. 2) Examine the effect of information on the fuel consumption rate of the preceding vehicles on the following vehicles. As a result, the following findings were obtained: 1) By providing information to multiple following vehicles, the fuel consumption rate of the second vehicle was not lowered, while that of the third one was. 2) It is possible that, when information on fuel consumption of a preceding vehicle is provided to the following one, an inter-vehicular distance is shortened during deceleration to contribute to smooth traffic flow. From the above results, it is suggested that, when targeting a vehicle group, sharing the information on preceding vehicles is effective.

Development of a Body Network System with GSEK/VDX Standards and CAN Protocol (OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발)

  • 신민석;이우택;선우명호;한석영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.

A Decision Scheme of Dynamic Task Size for Cloud Server composed of Connected Cars (연결형 자동차로 구성된 클라우드 서버를 위한 동적 작업 크기 결정 기법)

  • Min, Hong;Jung, Jinman;Kim, Taesik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • With developing vehicle and communication technologies, cars can communicate with road-side infrastructures and among other cars. As autonomous driving cars have been developed, the cars are equipped with many sensors and powerful processing units. There are many studies related to provide cloud services to users by using available resources of connected cars. In this paper, we proposed a dynamic task size decision scheme that considers communication environment between a vehicle and a base station as well as available resources while allocating a proper task to each vehicle. Simulation results based on the proposed model show that a vehicle can complete its allocated task when we considers available resources and communication environments.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

A Design of Framework for Interworking between Heterogeneous Vehicle Networks (이기종 차량 네트워크간의 연동을 위한 프레임워크 설계)

  • Yun, Sangdu;Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.219-222
    • /
    • 2009
  • Recently, as the techniques of vehicle and communication have improve, the techniques of in- vehicle network that is a essential part of ITS have been focused. In-vehicle networks, however, are not unified to single network. The networks are composed of several local networks because of communication speed, cost and efficiency. It is important to communicate information between the networks. Therefore, the complexity of network design for communication increases. To solve this problem, local networks need a framework for interworking between heterogeneous networks. In this paper, a framework interworking between in-vehicle networks is proposed.

  • PDF

Hacking attack and vulnerabilities in vehicle and smart key RF communication (차량과 스마트키 RF통신에 대한 해킹 공격 및 취약점에 대한 연구)

  • Kim, Seung-woo;Park, Dea-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1052-1057
    • /
    • 2020
  • With the development of new ICT technology, smart keys for vehicles are terminals with ICT technology. Therefore, when the vehicle and the smart key communicate with RF, a cyber hacking attack is possible. Cyber-attacks on smart keys can pose a threat to vehicle theft and vehicle control. Therefore, it is necessary to study hacking attacks and vulnerabilities of smart keys for autonomous vehicles. In this paper, we analyze the cyber attack case of RF communication for vehicles and smart keys. In addition, a real RF cyber attack on the smart key is performed, and the vulnerability of radio wave replication in the same frequency band is found. In this paper, we analyze the vulnerability of RF communication between vehicles and smart keys, and propose a countermeasure against cyber security. In the future, plans to strengthen cyber attacks and security through the popularization of autonomous vehicles will become basic data to protect human and vehicle safety.

An Air-Interface for Ad Hoc Networks Supporting High Mobility

  • Lott, Matthias;Ebner, Andre;Meincke, Michael;Halfmann, Rudiger;Wischhof, Lars;Schulz, Egon;Rohling,
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.295-306
    • /
    • 2004
  • In this paper, a novel air-interface is presented for Fleet-Net1, a self-organizing network for inter-vehicle and vehicle-toroadsidecommunication. The air-interface is based upon the lowchip-rate version of UMTS/TDD. To adapt the cellular UMTS standard to an air-interface for ad hoc networks, changes of the physical layer, medium access control sub-layer and radio resource management are required. An overview of the required modifications is given here. Particularly, a decentralized synchronization mechanism is presented and analyzed by means of simulations. Furthermore, changes for the medium access control are explained in detail, which allow for an efficient operation in partly meshed networks and prioritization. Performance results of the overall system considering throughput and delay are derived by means of analytical evaluations and event-driven simulations. Based on realistic mobility models, it is shown that the presented solution provides a robust communication platform even in vehicular environments. The proposed air-interface is a cost-effective solution not only for inter-vehicle communication, but also for ad hoc networking in general, benefiting from the mass-market of UMTS.

Automotive Diagnostic Gateway using Diagnostic over Internet Protocol

  • Lee, Young Seo;Kim, Jin Ho;Jeon, Jae Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.313-318
    • /
    • 2014
  • Recently, Ethernet-based Diagnostic Over Internet Protocol (DoIP) was applied to automotive systems, and in-vehicle gateways have been introduced to integrate Ethernet with traditional in-vehicle networks, such as the local interconnect network (LIN), controller area network (CAN) and FlexRay. The introduction of in-vehicle gateways and of Ethernet based diagnostic protocols not only decreases the complexity of the networks, but also reduces the update time for ECU software reprogramming while enabling the use of a range of services, including remote diagnostics. In this paper, a diagnostic gateway was implement for an automotive system, and the performance measurements are presented. In addition, a range of applications provided by the diagnostic gateway are proposed.

A vehicle Diagnosis and Control System via Mobile Network

  • Choi, Yong-Wun;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.85-90
    • /
    • 2005
  • The advance of mobile and telematics technologies has produced vehicles with various convenient services for drivers. Specifically lots of researches and several technologies have been developed to provide services of a remote vehicle diagnosis and control. The existing and representative product for a vehicle control is a RCS (remote control system), but it has a problem of short control distance and fragile security. In this paper, a telematics terminal embedded with CDMA and GPS is designed, which can be connected to the Internet. It allows a driver with a cellular phone to remotely diagnosis and control a vehicle via wireless network and SMS.

  • PDF