• Title/Summary/Keyword: Vegetation increase

Search Result 461, Processing Time 0.042 seconds

Temperature Monitoring of Vegetation Models for the Extensive Green Roof (관리조방형 옥상녹화의 식재모델별 표면온도 모니터링)

  • Youn, Hee-Jung;Jang, Seong-Wan;Lee, Eun-Heui
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.89-96
    • /
    • 2013
  • Green roofs can reduce surface water runoff, provide a habitat for wildlife moderate the urban heat island effect, improve building insulation and energy efficiency, improve the air quality, create aesthetic and amenity value, and preserve the roof's waterproofing. Green roofs are mainly divided into three types : intensive, simple-intensive, and extensive. Especially, extensive roof environment is a harsh one for plant growth; limited water availability, wide temperature fluctuations, high exposure to wind and solar radiation create highly stressed environment. This study, aimed at extensive green roof, was carried out on the rooftop of the library at Seoul Women's Univ. from October to November, 2012 and from March to August, 2013. To suggest the most effective vegetation model for biodiversity and heat island mitigation, surface temperatures were monitored by each vegetation model. We found that herbaceous plants of Aster sphathulifolius, Aceriphyllum rossii and Belamcanda chinensis, shrub of Syringa patula 'Miss Kim', Thymus quinquecostatus var. japonica, Sedum species can mixing each other. Among them, the vegetation models including Sedum takesimense, Aster sphathulifolius, Thymus quinquecostatus var. japonica was more effective on the surface temperature mitigation, because the species have the tolerance and high ratio of covering, and also in water. Especially, in the treatment of bark mulching, they helped to increase the temperature of vegetation models. In the case of summer, temperature mitigation of vegetation models were no significant difference among vegetation types. Compared to surface temperature of June, July and August were apparent impact of temperature mitigation, it shows that temperature mitigation are strongly influenced by substrate water content.

Summer Vegetation Characteristic of Nature-like Stream Bank Stabilization (자연형 호안공법의 여름철 식생특성)

  • Lee, Kang-Suk;Park, Jin-Ki;Park, Jung-Haw;Yeon, Gyu-Bang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2078-2082
    • /
    • 2009
  • Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, stream bank stabilization methods, and stream flow processes are described and interpreted for selected stream of Goesan, Central Korea. Idong Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods. The project aim to maintain or increase stream bank stabilization ecosystem goods and services while protecting downstream and stream bank ecosystem. A number of protecting methods which are a Flight of fieldstone, Vegetation block, Green river block, Stone net, Green environment block, Eco friendly cobble, Vegetation mat and Geo green cell and Firefly block were applied on the bank of Idong stream. The stream sites have been monitored about flora conditions each method in 2007. We selected 12 points for summer seasons to separately investigate in left bank, right bank and river bed. The main purpose of this study was to find out suitable methods and to improve stream restoration techniques for ecosystem. On the stream bank, Eco friendly cobble method(9.57) was the highest average of vegetation cover and Firefly block method(3.87) was the lowest average in applied methods.

  • PDF

Analysis of Soil Properties and Microbial Communities for Mine Soil Vegetation (폐광산지역 토양 식생복원 과정 내 토양특성 및 미생물 군집 변화 분석)

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Mine soil contamination by high levels of metal ions that prevents the successful vegetation poses a serious problem. In the study presented here, we used the microbial biocatalyst of urease producing bacterium Sporosarcina pasteurii or plant extract based BioNeutro-GEM (BNG) agent. The ability of the biocatalysts to bioremediate contaminated soil from abandoned mine was examined by solid-state composting vegetation under field conditions. Treatment of mine soil with the 2 biocatalysts for 5 months resulted in pH increase and electric conductivity reduction compared to untreated control. Further analyses revealed that the microbial catalysts also promoted the root and shoot growth to the untreated control during the vegetation treatments. After the Sporosarcina pasteurii or plant extract based BNG treatment, the microbial community change was monitored by culture-independent pyrosequencing. These results demonstrate that the microbial biocatalysts could potentially be used in the soil bioremediation from mine-impacted area.

Vegetation Type Classification and Endemic-Rare Plants Investigation in Forest Vegetation Area Distributed by Vulnerable Species to Climate Change, Mt. Jiri (지리산 기후변화 취약수종 분포지의 산림식생 유형 및 희귀-특산식물 분포 특성)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-Hwan;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Subalpine zone is geographically vulnerable to climate change. Forest vegetation in this zone is one of the important basic indicator to observe the influence of climate change. This study was conducting phytosociological community classification and endemic-rare plants investigation based on vulnerable species to climate change at the subalpine zone, Mt. Jiri. Vegetation data were collected by 37 quadrate plots from March to October, 2015. In order to understand the species composition of plant sociological vegetation types and the ecological impacts of species, we analyzed the layer structure of vegetation type using important values. Vegetation type was classified into eight species groups and five vegetation units. The vegetation types can be suggested as an indicator on the change of species composition according to the future climate change. There were 9 taxa endemic plants and 17 taxa rare plants designated by KFS(Korea Forest Service) where 41.2% of them were the northern plant. Endemic-rare plants increased as the altitude of vegetation unit increase. Importance value analysis showed that the mean importance value of Abies koreana was highest of all vegetation units. Based on analysis of each layer, all units except vegetation unit 1 were considered to be in competition with the species such as Quercus mongolica and Acer pseudosieboldianum. The results of this study can be a basic data to understand the new patterns caused by climate change. In addition, it can be a basic indicator of long-term monitoring through vegetation science approach.

Restoration Plan and Ecological Characteristics of Vegetation in the Area Adjacent to GeumJeong Mountain Fortress (금정산성 주변 식생의 생태적 특성과 복원방안)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.231-245
    • /
    • 2010
  • The the purpose of this study was to analyze of the vegetation structure and phytosociological changes in the area adjacent to GeumJeong Mountain Fortress for fifteen years. The result of this study was as follows; Of the 8 quadrates, site of the North Gate 2 was having a highest in the number of extinct trees, 15 kinds. This is probably due to trampling effect caused by climbers' steps. Site of the West Gate 1 and South gate 1 each had 8 kinds of extinct trees, respectively. The number of newly appeared trees was highest at site of the North Gate 1, (8 kinds) followed by the sites of South gate 1 and South gate 2, respectively (5 kinds). The highest decrease in number of tree species was observed in North Gate 1, therefore, there is a strong relationship between vegetation diversity and the number of users of the available spaces. In order to revitalize the unstable vegetation structure of the Area Adjacent to GeumJeong Mountain Fortress, Robinia pseudo-acacia has to be well maintained in the shrub tree layer, and vines, such as Smilax china, Humulus japonicus, and Pueraria thungergiana, should be removed. To recover natural vegetation, dead leaf layer should be protected, and more shrub trees need to be planted. In the understory and shrub tree layer, multi layer tree planting is highly recommended to recover natural vegetation and increase tree diversity. In order to improve bad soil condition caused by trampling effect of recreational users, special treatments to the soil structure are required, such as mulching and raking soil. Also, depending on its soil damage from users trampling, the areas in the park should be divided into usable areas and user limited areas by the sabbatical year system. To improve the soil acidity due to acidic rain, soil buffering ability should be improved by activating microorganisms in the soil by using lime and organic material.

Monitoring on Vegetation Structure for Ecological Restoration of Small Stream in Paju (파주 갈대 샛강 생태적 복원을 위한 식생구조 모니터링 연구)

  • Kim, Jeong-Ho;Lee, Kyong-Jae
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.99-111
    • /
    • 2009
  • In this study vegetation structure was monitored focusing on slanting surface of stream for the purpose of developing a management plan and ecological restoration of small stream in Paju. The study was conducted by types of geographical structure, yearly flora, naturalization rate changes, actual vegetation changes, plant community changes. Slope area of small stream in Paju was varied in the slope range of $10{\sim}35^{\circ}$. The survey results of yearly flora showed that 37 species appeared in 2000, 55 species in 2001, 95 species in 2002, and 125 species in 2003. Therefore, the trend of continuous increase of flora each year was observed. In the case of yearly changes of actual vegetation, indigenous wetland herb community including Phragmites communis$(19.99%{\rightarrow}18.42%{\rightarrow}19.60%)$ did not show substantial changes in the area, while the influence of controlled flora such as Humulus scandens$(8.86%{\rightarrow}5.26%{\rightarrow}9.73%)$, and Ambrosia artemisiifolia$(1.06%{\rightarrow}1.43%{\rightarrow}6.93%)$ were increased. The vegetation structure investigated by 18 preset belt-transects also indicated that Phragmites communis and Miscanthus sacchariflorus were maintaining the status or decreasing the population, while the population of Humulus scandens, Ambrosia artemisiifolia, Setaria viridis, and Erigeron canadensis were greatly increased. Our proposal management to restore ecology is as follows: first, preservation and restoration of Phragmites communis landscape; second, restoration of potential stream vegetation community; third, selection and removal of controlled plants.

Using Gabion Systems with Vegetation Base Materials on Stability Analysis for the Forest Road Cut-slope Rehabilitation Techniques (임도비탈면의 복원을 위한 식생기반재 돌망태의 안정성 분석)

  • Park, Jae-Hyeon;Jeong, Yong-Ho;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.106-113
    • /
    • 2009
  • In this study, stability of the new gabion system with vegetation base materials was analysed. New gabion system with vegetation base materials is a new approach which has been developed to achieve lope stabilization and revegetation of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials. Results from stability analysis are as follows. For the soil density, the angle of internal friction and unit weight of the rock fill was assumed to be $1.90g/cm^3$, $30^{\circ}$ and $2.30t/m^3$, respectively, the slope stability analysis showed that the new gabion system couldn't require any poles to fix it up, and could keep stable during both rainy and dry seasons. As the results of checks against overturning and sliding, the retaining wall with. the new gabion system could produce suitable factors of safety for overturning and sliding. Vegetation established on the surface of the new gabion systems indirectly can help to increase slope stability by prevention of surface erosion. Consequently, the new gabion system with vegetation base materials could achieve the desired effect on slope stabilization as much as existing gab ion system could do, and could promote rapid establishment of vegetation on cut-slopes.

Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels (실내실험에 의한 혼합사 식생하도의 지형변화와 하상토 분급 특성 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2016
  • This study investigates the development of lower channels and sediment sorting processes in the vegetated channels with the mixed sediment. The sediment discharges fluctuate with time and decrease with vegetation density. The bed changes with irregular patterns, and the sediment particles in the vegetated zone at the surface of bed are fine. The dimensionless geometric mean decreases with vegetation density. The fine sediment particles are trapped by vegetation, and the bed between main steam and vegetated zone increases. Moreover, the particle sizes are distributed irregularly near the zone. The hiding functions decrease with dimensionless particle size. However, the functions increase with vegetation density, which is confirmed by decreasing sediment discharge with vegetation. The lower channel is stable and the migration decreases in the condition of $0.5tems/cm^2$. However, the migration of the lower channel in the condition of $0.7stems/cm^2$ increases due to the increased sinuosity and new generated channels in the sedimentated vegetation zone.

Conveyance Analysis of Downstream of the Soyang Reservoir Considering the Influence of Vegetation (소양강 댐 직하류 하천의 식생 영향에 의한 통수능 분석)

  • Noh, Joonwoo;Shin, Hyunho;Kim, Hojoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.533-540
    • /
    • 2010
  • Recently management of vegetation distributed in the watercourse is very important not only for safety but also for river restoration. In general, vegetations in the watercourse increase hydraulic resistance and accordingly decrease conveyance capacity which may yield levee overflow. This paper simulates water level rise using 1D and 2D hydro dynamic model to check the possibility of overflow in downstream of the Soyang Reservoir by assigning different roughness coefficient corresponding to different types of vegetation. In this study, 3 different vegetation types of tree, shrub, and main channel were considered and corresponding Manning's roughness coefficient n was assigned based on the vegetation map generated from the site investigation. As results, the water level raised about 0.1 to 0.7 m comparing with the case without considering vegetation and a proper measurements is necessary where overflow occurs due to low level levee.

Assessment of drought stress in maize growing in coastal reclaimed lands on the Korean Peninsula using vegetation index (식생지수를 활용한 한반도 해안 간척지 옥수수의 한발스트레스 해석)

  • Seok In Kang;Tae seon Eom;Sung Yung Yoo;Sung ku Kang;Tae Wan Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.283-290
    • /
    • 2023
  • The Republic of Korea reclaimed land to increase its food self-sufficiency rate, but the yield was reduced due to abnormal climate. In this study, it was hypothesized that rapid and continuous monitoring technology could help improve yield. Using the vegetation index (VI) analysis, the drought stress index was calculated and the drought stress for corn grown in Hwaong, Saemangeum, and Yeongsan River reclaimed tidal land was predicted according to drying treatment. The vegetation index of corn did not decrease during the last 20 days of irrigation when soil moisture rapidly decreased, but decreased rapidly during the 20 days after irrigation. The reduction rate of the vegetation index according to the drying treatment was in the order of Saemangeum>Yeongsan River>Hwaong reclaimed tidal land, and normalized difference vegetation index(NDVI) decreased by approximately 50% in all reclaimed tidal lands, confirming that drought stress occurred due to the decrease in moisture content of the leaves. In addition, structure pigment chlorophyll index (SIPI) and photochemical reflectance index (PRI), which are calculated based on changes in light use efficiency and carotenoids, were reduced; drought stress caused a decrease in light use efficiency and an increase in carotenoid content. Therefore, vegetation index analysis was confirmed to be effective in evaluating and predicting drought stress in corn growing on reclaimed tidal land corn.