DOI QR코드

DOI QR Code

Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels

실내실험에 의한 혼합사 식생하도의 지형변화와 하상토 분급 특성 연구

  • Jang, Chang-Lae (Dept. of Civil Engineering, Korea National University of Transportation)
  • 장창래 (한국교통대학교 토목공학과)
  • Received : 2015.10.05
  • Accepted : 2015.11.26
  • Published : 2016.01.31

Abstract

This study investigates the development of lower channels and sediment sorting processes in the vegetated channels with the mixed sediment. The sediment discharges fluctuate with time and decrease with vegetation density. The bed changes with irregular patterns, and the sediment particles in the vegetated zone at the surface of bed are fine. The dimensionless geometric mean decreases with vegetation density. The fine sediment particles are trapped by vegetation, and the bed between main steam and vegetated zone increases. Moreover, the particle sizes are distributed irregularly near the zone. The hiding functions decrease with dimensionless particle size. However, the functions increase with vegetation density, which is confirmed by decreasing sediment discharge with vegetation. The lower channel is stable and the migration decreases in the condition of $0.5tems/cm^2$. However, the migration of the lower channel in the condition of $0.7stems/cm^2$ increases due to the increased sinuosity and new generated channels in the sedimentated vegetation zone.

본 연구에서는 식생에 의한 하도 변화와 하상토 분급특성을 파악하였다. 유사의 유출 특성은 불규칙하며, 식생 밀도가 증가함에 따라 유출되는 유사량은 감소하였다. 하상고는 불규칙하게 변하며, 하상토 표층에서 유사 입경은 작아졌다. 식생 밀도가 증가함에 따라 하상 표층에서 무차원 중 앙입경의 비는 감소하였다. 식생대에서 유사가 포착되거나, 식생대와 주흐름 사이에 경계층 흐름이 발생하여 유사가 퇴적되며, 식생대에서 흐름의 방향이 변화되어 표층에서 하상토 입도는 불규칙하게 분포하였다. 무차원 하상토 입경이 감소함에 따라, 차폐효과는 일정하게 감소하였다. 식생밀도가 증가함에 따라 하상 표층에서 차폐효과가 증가하며, 이것은 실험 수로 하류단에서 유사 유출량이 감소하는 것과 일치한다. 식생 밀도가 $0.5stems/cm^2$에서 저수로 이동은 감소하고 안정적인 특성을 보여주었으나, $0.7stems/cm^2$에서 저수로 이동은 증가하였다. 이것은 식생 밀도가 증가하면서 저수로 사행도가 증가하고, 식생대에서 유사가 퇴적되어 새로운 저수로가 형성되었기 때문이다.

Keywords

References

  1. Gran, K., and Paola, C. (2001). "Riparian vegetation controls on braided stream dynamics." Water Resour. Res., Vol. 37m No. 12, 3275-3283. https://doi.org/10.1029/2000WR000203
  2. Ikeda, S., and Izumi, N. (1990). "Width and depth of self-formed straight gravel rivers with bank vegetation." Water Resour. Res., Vol. 26, No. 10, 2353-2364. https://doi.org/10.1029/WR026i010p02353
  3. Jang, C.-L. (2014). "Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the alluvial channels with mixed grain size." J. Korea Water Resour. Assoc. Vol. 47, No. 12:1213-1225. https://doi.org/10.3741/JKWRA.2014.47.12.1213
  4. Jang, C.-L., and Shimizu, Y. (2007). "Vegetation effects on the morphological behavior of alluvial channels.." Journal of Hydraulic Research, Vol. 45, No. 6, pp. 763-772. https://doi.org/10.1080/00221686.2007.9521814
  5. Kondolf, G.M., and Wolman, M.G. (1993). "The sizes of salmonid spawning gravels." Water Resour. Res., Vol. 29, 2275-2285. https://doi.org/10.1029/93WR00402
  6. Lisle, T. E., Iseya, F., and Ikeda, H. (1993), "Response of a channel with alternate bars to a decrease in supply of mixed-. size bed load: A flume experiment", Water Resour. Res., Vol. 29, No.11, 3623-3629, doi:10.1029/93WR01673.
  7. Lopez, M., and Garcia, M. (2001). "Mean flow and turbulence strucuture of open channel flow through non-emergent vegetation." J. Hydraul. Engrg. ASCE, Vol. 127, pp. 392-402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  8. Nepf, H.M., and Vivoni, E.R. (2000). "Flow structures in depthlimited, vegetated flow." Journal of Geophysical Research, Vol. 105, No.C12, 28, pp. 547-557.
  9. Parker, G. (1990), "Surface-based bedload transport relation for gravel rivers", Journal of Hydraulic Reseach, IAHR, Vol. 28, No. 4, 417-436. https://doi.org/10.1080/00221689009499058
  10. Parker, G., Klingeman, P. C., and McLean, D. L. (1982), "Bedload and size distribution in paved gravel-bed streams", J. Hydraul. Eng., ASCE, Vol. 108, No.HY4, pp.544-571.
  11. Parker, G., and Klingeman, P. C. (1982), "On why gravel bed streams are paved", Water Resour. Res., Vol. 18, No. 5, 1409-1423, doi:10.1029/WR018i005p01409.
  12. Tal, M., and Paola, C. (2010). "Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments." Earth Surf. Process. Landforms. Vol. 35, pp. 1014-1028. DOI:10.1002/esp.1908.
  13. Thorne, C.D., and Furbish, D.J. (1995). "Influences of coarse bank roughness on flow within a sharply curved river bend." Geomorphology, Vol. 12, pp. 241-257. https://doi.org/10.1016/0169-555X(95)00007-R
  14. Thorne, C.R. (1990). Effects of vegetation on riverbank erosion and stability in vegetation and erosion, edited by Thornes, J.B., John Wiley, New York, pp.125-144.
  15. Tsujimoto, T. (1999). "Fluvial processes in streams with vegetation." J. Hydraul. Res. Vol. 106, No. 6, pp. 789-803.
  16. Viparelli, E., Gaeuman, D., Wilcock, P., and Parker, G. (2011), "A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River", Water Resour. Res., Vol. 47, doi:10.1029/2010WR009164,2011.
  17. Wilcock, P.R., and Crowe, J.C. (2003). "Surface-based transport model for mixed-size sediment." J. Hydraul. Eng., ASCE, Vol. 129, No. 20, pp. 120-128, doi:10.1061/(ASCE)0733-9429(2003)129:2(120).
  18. Wilcock, P.R., and McArdel, B.W. (1993). "Surface-Based Fractional Transport Rates: Mobilization Thresholds and Partial Transport of a Sand-Gravel Sediment." Water Resour. Res., Vol. 29, No. 4, pp. 1297-1312. https://doi.org/10.1029/92WR02748