DOI QR코드

DOI QR Code

Conveyance Analysis of Downstream of the Soyang Reservoir Considering the Influence of Vegetation

소양강 댐 직하류 하천의 식생 영향에 의한 통수능 분석

  • 노준우 (한국수자원공사 K-water연구원) ;
  • 신현호 (한국수자원공사 K-water연구원) ;
  • 김호준 (한국수자원공사 K-water연구원)
  • Received : 2009.12.23
  • Accepted : 2010.01.13
  • Published : 2010.12.31

Abstract

Recently management of vegetation distributed in the watercourse is very important not only for safety but also for river restoration. In general, vegetations in the watercourse increase hydraulic resistance and accordingly decrease conveyance capacity which may yield levee overflow. This paper simulates water level rise using 1D and 2D hydro dynamic model to check the possibility of overflow in downstream of the Soyang Reservoir by assigning different roughness coefficient corresponding to different types of vegetation. In this study, 3 different vegetation types of tree, shrub, and main channel were considered and corresponding Manning's roughness coefficient n was assigned based on the vegetation map generated from the site investigation. As results, the water level raised about 0.1 to 0.7 m comparing with the case without considering vegetation and a proper measurements is necessary where overflow occurs due to low level levee.

최근, 하천변에 분포된 식생관리는 하천의 안정성 뿐만 아니라 하천복원을 위해서도 매우 중요하다. 통상 하천변에 분포된 식생에 의하여 수리학적 저항이 증가되고 통수능이 감소되어 제방 범람을 초래한다. 본 논문에서는 1차원 및 2차원 수리해석 모형을 활용하여 소양강 댐 하류하천을 대상으로 서로 상이한 식생분포에 해당하는 조도계수를 적용함으로써 식생에 의한 제방월류 가능성을 검토하였다. 본 연구에서는 3가지 상이한 조도계수 즉, 관목부, 교목부, 그리고 주수로 부로 구분하여 해당되는 조도계수를 현장측정을 통해 작성한 식생도를 바탕으로 모형에 반영하여 이들에 의한 영향을 고려하였다. 전체적으로 식생에 의하여 약 0.1 m - 0.7 m 수위가 상승하는 것으로 모의되었으며 월류에 취약한 제방의 경우 범람방지를 위해 적절한 대책이 필요한 것으로 분석되었다.

Keywords

References

  1. 건설교통부(2002) 북한강수계 하천정비기본계획(보완).
  2. 김지성, 김극수, 김원, 노준우, 김호준(2009) 소양강댐 하류구간자생 수목군에 의한 흐름저항 영향 평가. 한국수자원학회 학술발표회논문집, 한국수자원학회,
  3. 우효섭(2001) 하천수리학, 청문각.
  4. 윤세의(1996) 하천 식수의 수리학, 한국수자원학회지, 한국수자원학회, 제29권, 제2호, pp. 27-38.
  5. 장창래(2006) 하천의 지형변동과 식생, 한국수자원학회지, 한국수자원학회, 제39권, 제12호, pp. 52-58.
  6. 최성욱(1997) 식생을 고려한 개수로 흐름에서의 경계층이론, 한국수자원학회지, 한국수자원학회, 제30권, 제6호, pp. 62-65.
  7. 최성욱, 윤병만, 우효섭, 조강현(2004) 댐 건설에 의한 유황 변화에 따른 하류 하도에서 하천지형학적 변화 및 식생피복의 변화, 황강 합천댐 사례, 한국수자원학회논문집, 한국수자원학회, 제37권, 제1호, pp. 55-66.
  8. Andrews, E. D. (1984) Bed-material entrainment and htdraulic geometry of gravel-bed rivers in Colorado, Geological Society of America Bulletin, Vol. 95, pp. 371-378. https://doi.org/10.1130/0016-7606(1984)95<371:BEAHGO>2.0.CO;2
  9. Chow, V.T. (1959) Open-channel Hydraulics, McGraw-Hill, New york, NY.
  10. Committee on Hydromechanics (1963) Friction factors in open channels, Proceedings of the American Society of Civil Engineers, Vol. 89, No. HY2, pp. 97-143.
  11. Dixon, M.D. and Turner, M.G. (2006) Regulated flow regimes on the Wisconsin River, USA, River Research and Application, Vol. 22, No. 10, pp. 1057-1083. https://doi.org/10.1002/rra.948
  12. Hey, R.D. and Throne, C.R. (1986), Stable channels with mobile gravel beds, Journal of Hydraulic Engineering, ASCE, Vol. 112, pp. 671-689. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:8(671)
  13. Hunag, H.Q. and Nanson, G.C. (1997) Vegetation and channel variantion: a case study of four snall streams in southeastern Australia, Geomorphology, Vol. 18, pp. 237-249. https://doi.org/10.1016/S0169-555X(96)00028-1
  14. Hydrology Engineering Center (1998) HEC-RAS river analysis system user's manual, US Army Corps of Engineers, Davis, CA.
  15. Johnson, W.C. (1994) Woodland expansion in the Platte River, Nebraska: Patterns and causes, Ecological Monographs, Vol. 64, pp. 45-84. https://doi.org/10.2307/2937055
  16. Johnson, W.C., Burgess, R.L., and Keammer, E.R. (1976) Forest overstory vegetation and environment on the Missouri River floodplain in North Dakota, Ecological Monographs, Vol. 46, pp. 59-84. https://doi.org/10.2307/1942394
  17. Kamada, M. and Okebe, T. (1998) Vegetation mapping with the aid of low-altitude aerial photography, Applied Vegetation Science, Vol. 1, pp. 211-218. https://doi.org/10.2307/1478950
  18. King, I.P. and Norton, W.R. (1978) Recent applications of RMA 's finite element models for two dimensional hydrodynamics and water quality, in FEWR2: pp. 281-299.
  19. Mahoney, J.M. and Rood, S.B. (1998) Stream flow requirements for cottonwood seedling recruitment in integrative model, Wetlands, Vol. 18, No. 4, pp. 634. https://doi.org/10.1007/BF03161678
  20. Masterman, R. and Thorne, C.R. (1992) Predicting influence of bank vegetation on channel capacity, J. of Hydraulic Engineering, ASCE, Vol. 118, No. 7.
  21. Rood, S.B., Kalischuk, A.R., and Mahoney, J.M. (1998) Initial cottonwood seedling recruitment following the flood of the century of the Oldman River, Alberta, Canada, Wetlands, Vol. 18, No. 4.
  22. Tsujimoto, T. (1999) Fluvial process in streams with vegetation, J. HydrauI. Res., Vol. 37, No. 6, pp. 789-803. https://doi.org/10.1080/00221689909498512
  23. Turner, R.M. (1974) Quantitative and historical evidence of vegetation changes along the upper Gila River, Arizona, USGS Professional Paper Vol. 655, No. H, pp. 20.
  24. Wu, W. and Wang, S.S.Y. (2004) A Depth-averaged two-dimensional numerical modeling of flow and sediment transport in open channels with vegetation, Riparian Vegetation and Fluvial Geomorphology, S. J. Bennett and A. Simon(ed.), pp. 267-282, AGU, Washington, D.C.