• Title/Summary/Keyword: Vegetation height

Search Result 334, Processing Time 0.024 seconds

Changes of Species Diversity and Development of Vegetation Structure during Abandoned Field Succession after Shifting Cultivation in Korea (화전 후 묵밭의 식생 천이에 따른 종다양성 및 식생 구조의 발달)

  • Lee, Kyu-Song
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.227-235
    • /
    • 2006
  • Changes of the species diversity and development of vegetation structure during abandoned field succession after shifting cultivation were investigated in Pyoungchang, Gangwon-Do, Korea. The height of top layer tended to increase rapidly during the earlier successional stages and stabilize in the later successional stage. The heights of top layer in the 10, 20, 50 and 80 year old-field were 4, 9, 18 and 18 m, respectively. In this region, thirty five year after abandonment need for the development to the normal forest formed by 4 stratum structure, tree, sub-tree, shrub and herb layer. Among the vegetation values, Ivc showed a tendency to increase logarithmically, and Hcl a tendency to increase linearly during abandoned field succession. Species diversity showed the peak in mid-successional stages ($10{\sim}20$ year old-field) and declined slightly thereafter. Species diversity was correlated closely with the species richness than the evenness. The most woody species established in the earlier stage ($2{\sim}6$ year old-field) and turned over their dominance step by step during succession. These results support the IFC model proposed by Egler (1954).

A study on thermal simulation for extensive green roof system using a plant canopy model (식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구)

  • Kim, Tae Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.

Evaluation of Air Ion According to Vegetation Types in Valleys and Slopes - Focused on Tangeumdae Park in ChungJu - (계곡·사면부의 식생유형에 따른 공기이온 평가 - 충주시 탄금대 공원을 대상으로 -)

  • Yoon, Young-Han;Lee, Sang-Hoon;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.519-529
    • /
    • 2020
  • The purpose of this study was to provide basic health care data for the climate aspects of park re-cultivation by evaluating air ions according to the type of vegetation in the valley and upper slopes of the mountain park. Simple negative or positive air ions were expected to show the same tendencies, so they were analyzed in terms of correcting the air ion index. By analyzing the air ions according to the topography, it was found that valley > slope in terms of the air ion index. When analyzing air ions according to tree species, we found that evergreen conifers in the valley > the deciduous broad-leaved trees in the valley > the evergreen conifers in the slope = the deciduous broad-leaved trees in the slope. For DBH(Diameter at breast height), the valley large pole > slope large pole > slope medium hard wood, while crown density was analyzed as valley dense > slope dense> valley proper > slope proper. Layered structure analysis showed that the multi-layer structure of the valley > multi-layer structure of the slope = the single-layer structure of the valley > the single-layer structure of the slope. The correlation coefficient was determined according to vegetation type and air ion index in the order of DBH > crown density > layer structure > geomorphic structure. In this study, limits exist except for ridge line, valley, and slopes in urban mountain parks. Therefore, analysis should be made considering both topographical structure and various vegetation types in future studies of air ions.

Ecological Studies on the Vegetational Characteristics of the Abies koreana Forest (구상나무림(林)의 군락생태학적 연구)

  • Lee, Yoon Won;Hong, Sung Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.247-257
    • /
    • 1995
  • This research carried out forest community classification on the basis of the methods of ZM school, in order to furnish useful information needed for forest management, and for afforestation and preservations of Abies koreana forest which was Korean native species, and the research results could be summarized as follows. Abies koreana forest was divided into 10 vegetation units ; This forest was divided into Abies koreana-Quercus mongolica community and Abies koreana-Sasa quelpartensis community. Abies koreana-Quercus mongolica community was divided into Tripterygium regelii group, Patrinia saniculaefolia group, and Typical group, and Tripterygium regelii group seas divided into Typical subgroup. Pimpinella brachycarpa subgroup, and Hemirocallis fulva subgroup. Abies koreana-Sasa quelpartensis community was divided into Berberis koreana group, Trachelospermum asiaticum var. intermedium group, and Typical group. Berberis koreana group was divided into Typical subgroup and Hepatica asiatica subgroup, and Tranchelospermum asiaticum var. intermedium group was divided into Hepatica asiatica subgroup and Typical subgroup. According to the results of the analysis by coincidence method, Abies koreana-Quercus mongolica community represented in Mt. Chiri, Mt. Deokyu and Mt. Kaya which were located in the Sobaek mountains, Abies koreana-Sasa quelpartensis community represented in Mt. Hanla. Therefore it was thought that Abies koreana forest was classified by geographical position, and vegetation units of Abies koreana forest tended to be classified by the altitude and topography. As for DBH and height of Abies koreana, mean DBH and height of Abies koreana-Quercus mongolica community were each 28.4cm, 10.6m that were larger than mean DBH and mean height(each 23.6cm, 6.3m) of Sasa quelpartensis community. Among Abies koreana-Quercus mongolica community, Patrinia saniculae-folia group had the smallest mean DBH and mean height(20cm, 5m), and among Abies koreana-Sasa quelpartensis community, Typical group had the smallest mean DBH and mean height(4cm, 3m).

  • PDF

Community Structure of Forest Vegetation in Mt. Geumsusan belong to Woraksan National Park (월악산국립공원 금수산 산림식생의 군집구조)

  • Kim, Ho-Jin;Shin, Jae-Kwon;Lee, Cheol-Ho;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.202-219
    • /
    • 2017
  • The purpose of this study was to analyze the community structure of forest vegetation in Mt. Geumsusan belong to Woraksan National Park for providing basic information of ecological management. Data were collected by 41 plots from June to November in 2016 using Z-M phytosociology method, which was analyzed with vegetation types, mean importance value and coincidence method. As the results, the forest vegetation was classified into Quercus mongolica community group including Cornus controversa community, Castanea crenata community(Vegetation unit 3), Quercus variabilis community(Vegetation unit 4) and Q. mongolica community(Vegetation unit 5). C. controversa community was divided into two groups such as Ulmus davidiana var. japonica group(Vegetation unit 1) and Parthenocissus tricuspidata group(Vegetation unit 2). Mean importance percentage of vegetation unit 1 was showing Fraxinus rhynchophylla 14.9%, Morus bombycis 8.7% and Acer pictum subsp. mono 8.3%, that of unit 2 was Larix kaempferi 23.2%, C. controversa 20.1% and P. tricuspidata 6.5%, that of unit 3 was Q. mongolica 15.8%, C. crenata 13.4% and F. rhynchophylla 9.8%, that of unit 4 was Q. mongolica 26.6%, Q. variabilis 20.8% and Pinus densiflora 16.7%, that of unit 5 was Q. mongolica 48.3%, Styrax obassia 7.5%, F. rhynchophylla 5.3% in the order, respectively. Each vegetation unit was classified with dependance on environmental factors as 700m of altitude, $20^{\circ}$ of slope degree, middle slope of topography, 20% of bare rock, 30 taxa of present species, 80% of tree layer coverage rate and 20m of tree layer height. In conclusion, it was preferentially considered that development of peculiar and specific management methods with vegetation unit classified above should be needed for ecological and sustainable forest vegetation management.

A Study on Development of Phragmites spp. Sod for Restoration of Shore Vegetation -Effects of Soil Compositions and Seeding rates on the Development of Phragmites japonica Sod- (호안자연직생 복원을 위한 갈대류(Phragmites spp.) 뗏장개발 - 토양의 조성 및 반종량이 달뿌리(Phragmites japonica)뗏장 형성에 미치는 영향)

  • 정대영;심상렬
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.1
    • /
    • pp.28-35
    • /
    • 1998
  • Six soil compositions with three seeding rates were evaluated for influence on germination, coverage, height and sod development of Phragmites japonica. 1. Germination was high on peat, vermiculite and bark as compared with on peatmoss and sandy loam. 2. Covering rate was high within 2 months when seeded at 9g/$m^2$, but became same within 3 months afterwards when seeded at 3,6 and 9g/$m^2$, respectively. 3. Sod was highly developed on peat and bark treatments whereas Sandy loam, peatmoss and vermiculite treatments didn't develop sod. 4. Sod grown on bark weighed light and, therefore, was suggested best from a dealing cost point of view. 5. Cutting at 10 cm height didn't influence on sod development regardless of soil compositions.

  • PDF

Spatial Distribution and Dynamics of Vegetation on a Gravel Bar: Case Study in the Bangtae Stream (자갈 하중주에서 식생의 공간 분포 및 동태: 방태천의 사례)

  • Pee, Jung-Hun;Kim, Hye-Soo;Kim, Gyung-Soon;Oh, Woo-Seok;Koo, Bon-Yoel;Lee, Chang-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.215-224
    • /
    • 2013
  • We clarified the background for establishment of vegetation by comparing the spatial distribution maps of vegetation and substrate on a gravel bar in the Bangtae stream located on Inje-gun of Gangwon-do, the central eastern Korea. The total vegetation coverage was higher in the interior and lower in the marginal parts of the gravel bar. Spatial distribution of vegetation on the longitudinal section of the gravel bar tended to be arranged in the order of shrub, subtree, and tree dominated vegetation types from the front (upstream) toward the rear (downstream) parts. Coverage of the herbaceous plants was higher in the central and rear parts and lower in the front and right parts of the gravel bar. Vegetation height was higher in the rear part and became lowered as move toward the front part. Substrate was distributed in the order of boulder, gravel, sand, and boulder from the front toward the rear parts. Ordination of stands based on vegetation data was arranged in the order of annual plant, perennial herb, shrub, and tree dominated vegetation as move from the right to the left parts on the axis I. Species richness was higher in the order of Pinus densiflora community, Phragmites japonica community, Salix gracilistyla community, Fraxinus rhynchophylla community, annual plant dominated vegetation, and Prunus padus for. padus community based on the species rank-abundance curve. The order based on the Shannon's index was some different; diversity of Phragmites japonica community and Salix gracilistyla community, which showed higher dominance degree, were low differently from species richness. In conclusion, it was evaluated that the gravel bar newly established toward the upstream and vegetation dynamics of the gravel bar seemed to follow ecosystem mechanisms of succession. As were shown in the above results, the Bangtae stream corresponded to the upstream and thereby particle size of substrate was big. Therefore, they move by rolling and are accumulated for the upstream. Vegetation types were arranged in the order of woodland, shrub-land and grassland from the rear toward the front parts of the gravel bar and thereby reflected the formation process of the bar. However, the gravel bar is disturbed frequently by not only the running water but also the suspended sand as the dynamic space. Such disturbances cause habitat diversity and consequently led to high biodiversity.

Ecological Changes of the Larix kaempferi Plantations and the Restoration Effects Confirmed from the Results (일본잎갈나무조림지의 생태적 변화와 그 결과를 통해 확인된 복원 효과)

  • Kim, Se-Mi;An, Ji-Hong;Lim, Yun-Kyung;Pee, Jung-Hun;Kim, Gyung-Soon;Lee, Ho-Young;Cho, Yong-Chan;Bae, Kwan-Ho;Lee, Chang-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • Developmental process of vegetation over years after afforestation was analyzed in the Japanese larch (Larix kaempferi) plantations with different stand ages. The height and diameter of Japanese larch increased rapidly until 24 years after afforestation and tended to be blunted thereafter. The density of Japanese larch was similar with each other in the 8 and 17 years old stands but was reduced greatly in the 24 years old plantation and changing little thereafter. The floristic composition of the Japanese larch plantation did not show any clear trend depending on stand ages. The differences of species composition among plantation themselves with different ages were bigger than those between plantations and the reference stands, Mongolian oak (Quercus mongolica) stands. Japanese larch plantations showed a trend of succession to native vegetation dominated by Mongolian oak based on the results of analysis of frequency distribution by diameter class of major tree species. Species richness and diversity of all plantations were higher than those of the reference vegetation. As were shown in the above mentioned results, it can be evaluated that Japanese larch plantations practiced in the level of the functional restoration achieved successful restoration based on the floristic composition similar to the reference vegetation, the successional trend toward native vegetation, and higher species diversity compared with the reference vegetation.

A Study on the Vegetation Structure of Abies koreana Forest in Yeongsil Area of Hallasan Mountain (한라산 영실지역 구상나무림의 식생구조 연구)

  • Song, Kuk-Man;Kang, Young-Je
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • This study's purpose was to provide basic data for the monitoring of ecological changes caused by change of vegetation structure of Abies koreana forest in a study site susceptible to climatic change in Yeongsil area of Hallasan Mountain, Jeju Island. Surveys revealed this: in Yeongsil area of Hallasan Mountain, per 1 ha of A. koreana forests, total number 1,781, and A. koreana number 989, accounting for 55.5% of the total number of trees. 190 A. koreana or 19.2% were found to be dead. For the number of individual trees by DBH, trees standing 5 cm - 10 cm tall formed the largest portion at 39.9%, and in the case of other trees except A. koreana, the number of individual trees below 5 cm accounted for 23.5% of the total number of trees. The survey of importance by height revealed this: at the top level, the importance of A. koreana was the highest at 106.23, but the sum of importance of temperate deciduous broad-leaved trees (Prunus maximowiczii, Quercus mongolica, and Taxus cuspidata) was higher at 142.84 than that of A. koreana. The analysis of species diversity revealed 0.645 species diversity for the tree layer and 0.817 for the shrub layer; for evenness, 0.549 for the tree layer and 0.664 for the shrub layer; for dominance value; 0.451 for the tree layer and 0.336 for the shrub layer. The analysis of tree vitality revealed that for the A. koreana forests in Yeongsil, the composition ratio of A. koreana by type is AS type>AL type>DS type>DB type, and that of the other trees is AL type>AS type>AF type>AB type. Compared with the forests in other areas, the A. koreana forests in the Yeongsil area have a very high occurrence rate of dead trees, and a high importance of trees is shown in the deciduous broad-leaved tree forests. Compared with the A. koreana forests in the Jindallaebat area, with the same level above sea, the vegetation structures are fast changing. Also, due to dryness and other non-physical environmental changes caused by a lack of rainwater and dry winds in winter, dead trees are fast increasing in number. Environmental changes such as climate change diversely affect the maintenance of A. koreana in individual areas, and if environmental changes are fast and continue long, of the A. koreana forest areas in the Hallasan Mountain, the A. koreana forests in the Yeongsil area will decrease fastest in number and will experience changes in the vegetation structure. Thus, it is necessary to survey the vegetation changes in A. koreana forests, which are distributed in all directions but are centered on Hallasan Mountain, and to thus conduct long-term monitoring and research.

Structure and Understory Species Diversity of Pinus parviflora - Tsuga sieboldii Forest in Ulleung Island (울릉도 섬잣나무-솔송나무림의 구조 및 하층식생의 종 다양성)

  • Cho, Yong Chan;Hong, Jin Ki;Cho, Hyun Je;Bae, Kwan Ho;Kim, Jun Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • Vegetation structure, composition and diversity were quantified for 10 samples ($10m{\times}10m$) representing woody vegetation and for 30 samples ($1m {\times}3m$) representing understory vegetation in Pinus parviflora and Tsuga sieboldii forest of Taeharyeong, Ulleung-gun (Gyeongsangbuk-do). P. parviflora was limitedly advanced to sapling layer from seedling stage, and based on Mantel tests, composition of canopy layer was not established in ground woody vegetation. Non-metric multidimensional scaling revealed influence of biotic and abiotic factors in species composition of woody and understory vegetation. In the result of multiple regression model, abundance of P. parviflora (density and breast height area) and percent cover of woody debris were significant predict variables for understory diversity. These results suggest that relatively large disturbance is required for regeneration of P. parviflora and T. sieboldii forest, and control of expansion of monocultural understory species that monopolize resources such as Carex blepharicarpa and Maianthemum dilatatum, is necessary for maintenance of diversity.