• 제목/요약/키워드: Vascular tissue engineering

검색결과 65건 처리시간 0.026초

조직공학적 인조혈관의 생체 내 이식 실험 (In Vivo Experiment of Tissue-Engineered Artificial Vessel)

  • 임상현;조승우;홍유선;김병수;유경종;장병철;최차용
    • Journal of Chest Surgery
    • /
    • 제37권3호
    • /
    • pp.220-227
    • /
    • 2004
  • 관상동맥 질환과 말초혈관 질환의 증가에 따라 직경 6 mm 이하의 소구경 혈관의 필요성이 증가하고 있다. 저자들은 조직공학적 방법을 이용하여 소구경 인공혈관을 제작하여 생체 실험을 시행하였다. 동종 판막을 얻어 이를 탈세포화시킨 후 피실험동물의 골수를 채취하여 탈세포화시킨 혈관용 지지체(scaffold) 위에 이식하였다. 이와 같이 하여 제작된 인공 혈관을 잡견의 양측 경동맥에 이식한 후 혈관이 막히거나, 8주가 되었을 때 이를 제거하여 조직학적 검사를 시행하였다. 자가 세포를 이식하지 않고 지지체만을 이식하였던 대조군 4마리 중 3마리의 혈관은 2주 이내에 모두 막힌 것을 확인하였고 나머지 한 마리의 혈관은 혈관류(aneurysm)가 발생하였다. 그러나 자가 세포를 이식한 실험군 4마리 중 2마리는 각각 4주와 6주까지 혈관의 개통성을 유지하였고, 나머지 2마리는 8주까지 혈관의 개통성을 유지하였다. 조직학적 검사 결과, 8주까지 개통성을 유지하였던 혈관은 정상의 혈관과 거의 유사한 조직학적 구조를 나타내었다. 자가 세포와 탈세포화된 지지체를 이용하여 제작한 인공혈관은 조직학적 검사 결과 정상과 유사한 구조로 재생이 가능함을 보여주었다.

Algin Impregnated Vascular Graft I. In Vitro Investigation

  • Lee, Jin-Ho;Shin, Bung-Chul;Khang, Gil-Son;Lee, Hai-Bang
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권1호
    • /
    • pp.97-104
    • /
    • 1990
  • Microvel double velour graft impregnated with a biodegradable algin was studied as a new vascular graft. It is blood tight but still retains high porosity. Thls graft does not need to be preslotted with blood before implantation and has good tissue ingrowth and biological healing properties. The algin impregnated vascular graft was investigated by "in vitro" tests in this study. It was characterl zed by ESCA analysis, SEM observation, and measurements of water permeability, algin coating weight, mechanical properties and whole blood clotting time. The water permeability of the graft was reduced more than 99% and the whole blood clotting time was fast more than three times by the algin impregnation treatment. "In vivo" performance examinations of the algin impregnated graft are on progress.aft are on progress.

  • PDF

관류형 바이오리액터를 위한 박동 펌프 시스템 개발 (Development of the Pulsatile Pump System for a Perfusion Bioreactor)

  • 김학준;김선홍;정호윤;윤원수
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.526-533
    • /
    • 2011
  • This research is about the pulsatile pump system utilized in the perfusion bioreactor for the in vitro human tissue culture. A pulsatile pump system which can be applied to the culture of the vascular tissues including blood vessel is developed by using the idea of human heart's blood pumping into organs as followings: culture chamber, a pressurizing device which generates laminar pulsatile flow by controlling the x-sectional area of the culture media delivering tubing, a compliance chamber which supplies the pressuring device with a constant pressure, and a peristaltic pump which circulates the culture media in a circuit ranging from the culture chamber to the compliance chamber. The developed pulsatile pump system shows that a physiology of the human heart's blood pumping including pulsatile pressure waveform of systolic-diastolic pressure is well represented. Not only time domain but also frequency domain characteristics of pulsatile pump system which are necessary for the vascular tissue culture such as pulsatile pressure waveform's shape, the frequency, and the magnitude can be easily generated and manipulated by using the proposed system.

Algin-Impregnated Vascular Graft II. Preliminary Animal Study

  • Jin Ho Lee;Byu
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권3호
    • /
    • pp.157-164
    • /
    • 1991
  • Microvel $^{\textregistered}$ double velour graft impregnated with a biodegradable algin was studied as a new vatscular graft. It is impervious to blood but still retains high porosity. This graft does not require preclotting during implantation and has good tissue ingrowth and biological healing properties. Two vascular grafts impregnated with algin (6mm in diameter) were implanted in the aorta of mongrel dogs without preclotting. Two identical grafts were preclctted and served as controls. The grafts were harvested 2 and 4 months postoperatively, and the healing pattern was examined by a light microscope after hemRtoxylineosin staining. It was observed that endothelial cells were incompletely covered on both algin-impregnated and control grafts after 2 month Implantation, while they were fully covered on both grafts after 4 month. There were no significant differences in subendothelial granulation tissue organization and fibrinoid material absorption between the algin-impregnated and control grafts. The algin-impregnated graft did not show any harmful effect on the healing and thus can be a new promising graft which is not necessary preclotting during the implantation.

  • PDF

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발 (Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers)

  • 최진욱;임상현;홍유선;김병수
    • Journal of Chest Surgery
    • /
    • 제41권2호
    • /
    • pp.160-169
    • /
    • 2008
  • 배경: 혈관질환의 수술에 사용되는 인공 도관의 막힘과 문합부위의 좁아짐 등을 개선하기 위한 방법으로 조직공학적인 방법과 자가 세포를 이용한 인공혈관의 제작이 대안으로 대두되고 있다. 저자들은, 생흡수성이 있는 고분자 폴리머 지지체와 자가 골수세포를 이용한 인공혈관으로 생체실험을 시행하였다. 대상 및 방법: 생분해성 고분자 재료인 poly (lactide-co-${\varepsilon}$-caprolactone) (PLCL)과 poly(glycolic acid) (PGA) fiber로 혈관용 지지체를 제작한 후, 피실험 동물의 골수를 채취하여 혈관 내피 세포와 평활근 세포로 분열시켜 배양한 후 혈관 지지체위에 이식하였다. 만들어진 인공 혈관을 잡견의 복부대동맥에 이식한 후 3주 후에 혈관 조영술을 시행하고, 안락사 후에 혈관을 제거하여 조직학적 검사를 시행하였다. 결과: 6마리의 잡견 중 2마리에서 수술 후 10일에 혈관 지지체의 균열에 의한 대량 출혈로 사망하였다. 나머지 4마리의 잡견은 수술 후 3주까지 생존하였으며, 혈관 조영술상 혈관의 막힘이나 좁아짐은 발견되지 않았다. 인공 혈관의 내면은 작은 혈전들이 붙어 있었으며, 조직학 검사에서 정상 혈관과 유사한 3층의 구조를 나타내었다. 또한 면역화학 검사에서 혈관 내피세포와 혈관 평활근 세포가 재생된 것을 확인하였다. 결론: 고분자 폴리머와 자가 골수세포를 이용한 인공혈관은 생체 내에서 정상혈관과 유사한 모양으로 재생이 가능함을 보여주었다. 그러나, 동맥압력에 견디기 위해 혈관 지지체의 물성에 대한 개량과 충분한 양의 혈관 세포를 얻기 위한 연구가 더 필요할 것으로 생각된다.

Immunohistochemical Localization of Endogenous IAA in Peach (Prunus persica L.) Fruit during Development

  • Zhang, Wei;Li, Yang;Shi, Mengya;Hu, Hao;Hua, Baoguang;Yang, Aizhen;Liu, Yueping
    • 원예과학기술지
    • /
    • 제33권3호
    • /
    • pp.317-325
    • /
    • 2015
  • Peach (Prunus persica L.) is a model species for stone fruit studies within the Rosaceae family. Auxin plays an important role in the development of peach fruit. To reveal the distribution of auxin in the tissues of peach fruit, immunohistochemical localization of IAA was carried out in the seed, mesocarp, and endocarp in developing peach fruit using an anti-indole-3-acetic acid (anti-IAA) monoclonal antibody. A strong IAA signal was observed throughout the outer and inner integument during peach fruit development, and the distribution was zonal. The IAA signal was mainly focused in mucilage layers in the outer integument. The outer integument may function to produce or store IAA in the seed; a strong IAA signal was detected in the cells around the vascular tissue, whereas a weak IAA signal was located in the vascular tissues. In the mesocarp, the cells around the vascular bundle tissue gave rise to an IAA signal that increased in the late phase of fruit growth, which coincided with a significant increase in fruit growth. The distribution of IAA, however, was changed when fruit was treated with auxin transport inhibitors NPA (1-N-naphthylphthalamic acid) or TIBA (2, 3, 5-triiodobenzoic acid); in mesocarp tissues, an IAA signal was detected mainly in vessels of the treated fruit. During the critical period of endocarp lignification, the vessel lignification process was negatively correlated with IAA signal. The present results confirmed that the distribution of IAA was different in various tissues of peach fruit according to the developmental stage. This research provides cytological data for further study of the regulatory mechanism of auxin in peach fruit.

Blockade of vascular angiogenesis by Aspergillus usamii var. shirousamii-transformed Angelicae Gigantis Radix and Zizyphus jujuba

  • Kang, Sang-Wook;Choi, Jung-Suk;Bae, Ji-Young;Li, Jing;Kim, Dong-Shoo;Kim, Jung-Lye;Shin, Seung-Yong;You, Hyun-Ju;Park, Hyoung-Sook;Ji, Geun-Eog;Kang, Young-Hee
    • Nutrition Research and Practice
    • /
    • 제3권1호
    • /
    • pp.3-8
    • /
    • 2009
  • The matrix metalloproteinases (MMP) play an important role in tumor invasion, angiogenesis and inflammatory tissue destruction. Increased expression of MMP was observed in benign tissue hyperplasia and in atherosclerotic lesions. Invasive cancer cells utilize MMP to degrade the extracellular matrix and vascular basement membrane during metastasis, where MMP-2 has been implicated in the development and dissemination of malignancies. The present study attempted to examine the antiangiogenic activity of the medicinal herbs of Aspergillus usamii var. shirousamii-transformed Angelicae Gigantis Radix and Zizyphus jujube (tAgR and tZj) with respect to MMP-2 production and endothelial motility in phorbol 12-myristate 13-acetate (PMA)- or VEGF-exposed human umbilical vein endothelial cells (HUVEC). Nontoxic tAgR and tZj substantially suppressed PMA-induced MMP-2 secretion. In addition, $25{\mu}g/mL$ tAgR and tZj prevented vascular endothelial growth factor-stimulated endothelial cell transmigration and tube formation. The results reveal that tAgR and tZj dampened endothelial MMP-2 production leading to endothelial transmigration and tube formation. tAgR and tZj-mediated inhibition of endothelial MMP may boost a therapeutic efficacy during vascular angiogenesis.

Phospholipid Component 를 함유한 가교된 Polyurethane Biomaterials의 제조와 물성 (Preparation and properties of crosslinked polyurethane containing phospholipid component for biomaterials)

  • Yoo, Hye-Jin;Kim, Han-Do
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.55-58
    • /
    • 2003
  • Segmented polyurethanes have been widely used for various commercial and experimental blood-contacting and tissue-contacting applications such as vascular prostheses, blood pumps, heart valves, pacemaker lead wire insulation, catheters, artificial hearts, and cardiac assist devices due to their generally favorable physical and mechanical properties, as well as fairly good biocompatibility and antithrombogenicity characteristics. (omitted)

  • PDF

Paclitaxel Coating Inhibits Inflammation Surrounding Subcutaneously Implanted Expanded Polytetrafluoroethylene (ePTFE) Hemodialysis Grafts in Rabbit Model

  • Baek, In-Su;Lee, Yu-Ji;Park, Soo-Jin;Bai, Cheng Zhe;Park, Jong-Sang;Kim, Dae-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.281-285
    • /
    • 2010
  • Hemodialysis vascular access dysfunction (HVAD) due to the aggressive development of venous neointimal hyperplasia remains a major complication for patients with synthetic arteriovenous grafts. Paclitaxel-coated expanded polytetrafluoroethylene (ePTFE) grafts effectively prevent neointimal hyperplasia and stenosis. However, perigraft inflammation or edema can be another complication of ePTFE grafts, preventing early cannulation. Three different types of ePTFE grafts, including grafts without paclitaxel coating (control group, n = 12), grafts with paclitaxel coating at a dose density of $0.61ug/mm^2$ (low concentration group, n = 12), and grafts with paclitaxel coating at a dose density of $1.15ug/mm^2$ (high concentration group, n = 12) were placed in the backs of 12 rabbits, simultaneously. Six rabbits were euthanized after one week and the remaining six were euthanized two weeks after implantation. Perigraft inflammation, graft wall inflammation, stromal cell proliferation, blood vessel formation, tissue necrosis and edema were analyzed for the grafts in each animal. Inflammation surrounding the paclitaxel-coated grafts was significantly reduced compared to the control group. Stromal cell layers were detected at the interface between the graft and the surrounding tissue in the control group, infiltrated into the graft interstices, and differentiated into myofibroblasts for graft healing. Paclitaxel-coated grafts inhibited stromal cell proliferation and infiltration into the graft wall. Tissue necrosis and edema were not detected in either of the paclitaxel-coated graft groups.